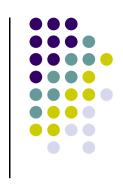
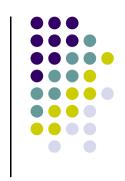

МОДЕЛИРОВАНИЕ ИСТОРИЧЕСКИХ ПРОЦЕССОВ

проф. Л.И. Бородкин зав. кафедрой исторической информатики Исторического ф-та МГУ

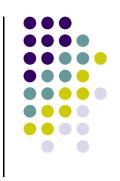


Специфика, уровни, типология


- Первые работы по моделированию исторических процессов опубликованы в 1970-х гг.
- В 90-х гг. в России проводится несколько конференций по проблемам методологии и методики моделирования исторических процессов.
- В 1996 году опубликован сборник статей "Математическое моделирование исторических процессов".
- Проблематика моделирования исторических процессов и явлений обладает ярко выраженной спецификой.
- Обоснование этой специфики содержится в работах акад. И.Д. Ковальченко, в которых охарактеризованы суть и цели моделирования, предложена типология моделей исторических процессов и явлений.

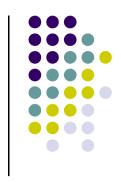
Специфика, уровни, типология

- Цели моделирования в истории:
 - реконструкция отсутствующих данных о динамике изучаемого процесса на некотором интервале времени; виртуальные 3D реконструкции культурного наследия;
 - анализ альтернатив исторического развития;
 - теоретическое исследование возможного поведения изучаемого явления или процесса по построенной математической модели.


Специфика, уровни, типология

Модели исторических процессов включают три класса:

- статистические,
- имитационные,
- аналитические



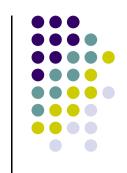
Как правило, в статистических моделях используются методы математической статистики: это регрессионные модели (модели множественной регрессии).

- Основная цель статистических моделей <u>выявление</u> и отбор факторов, влияющих на результат.
- Критерий верификации процент объясненной дисперсии.

В аналитических моделях используется математический аппарат дифференциальных уравнений. Результаты получаются путем решения систем уравнений либо аналитически (в общем виде), либо численно (с помощью компьютера).

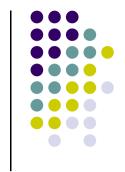
Основная цель – анализ <u>динамики</u> процесса на основе теоретических предположений о связях между переменными.

В имитационных моделях используется математический аппарат *конечно-разностных* уравнений.


Моделирующий алгоритм позволяет по исходным данным, содержащим сведения о начальном состоянии процесса (входной информации) и его параметрах, получить сведения о состояниях процесса на каждом последующем шаге.

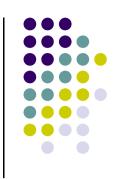
	Статистические	Аналитические	Имитационные
Аппарат	Мат. статистика	Диф. уравнения	Конечно-разностн. уравнения
Характер модели	Индуктивные, статические	Дедуктивные, динамические	Эмпирико- дедуктивные, динамические
Характер взаимосвязей	Стохастические	Детерминирован.	Оба типа
Уровень связей	Сложные связи, много перемен., мало уравнений	Простые связи, мало перемен., мало уравнений	Сложные связи, много перемен., много уравнений
Параметры	Из исходных данных	Из исх. данных либо <i>a priori</i>	Из исх. данных либо <i>a priori</i>
Верификация	Стат. методами	Стат. методами	Эмпирическая

Клиометрика (с 1960-х гг.) Клиодинамика (с начала 2000-х гг.)

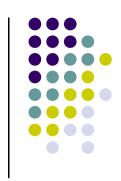


Клиометрика: Р.Фогель, Д.Норт (США),
 И.Д.Ковальченко, Л.В. Милов, Л.И. Бородкин (Россия)

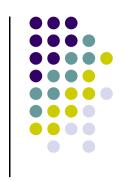
• Клиодинамика: П.Турчин (США), А.В.Коротаев, С.В. Цирель, С.В. Малков, Г.Г. Малинецкий, Л.И.Бородкин (Россия)


Нобелевская премия

- Контрфактические и альтернативные модели исторических процессов. В 1993 г. контрфактическое моделирование было отмечено Нобелевской премией, которую получили известные американские клиометристы Р.Фогель и Д.Норт.
- Цитата из текста обоснования решения Шведской Королевской Академии Наук о присуждении в 1993 г. Нобелевской премии по экономике :
- "...Они были пионерами в том направлении экономической истории, которое получило название "новая экономическая история" или клиометрика, т.е. направление исследований, которое сочетает экономическую теорию, количественные методы, проверку гипотез, контрфактическое моделирование и традиционные методы экономической истории для объяснения процессов экономического роста и упадка.



Нобелевская премия

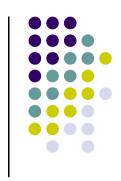

- Их работы позволили углубить наше знание и понимание таких фундаментальных вопросов, как почему, каким образом и когда происходили экономические изменения. Отмеченные премией работы Роберта Фогеля связаны с анализом роли железных дорог в экономическом развитии США, значения рабства как института и его экономической роли в США; отмечены также результаты, полученные Фогелем в историко-демографических исследованиях.
- ...Фогель и Норт, двигаясь разными путями, развили новые подходы в экономической истории, придав ей больше строгости и теоретичности".

- Примерами применения моделей в истории являются изучение развития цивилизаций (А. Тойнби), этносов (Л. Гумилев), общественных движений, научных направлений или технологических укладов.
- В таких задачах широко используются концептуальные понятия, например, понятие жизненного цикла, определяемого с учетом динамики природных факторов, демографических изменений, научнотехнического прогресса и т.п.

- Примером заимствования моделей, разработанных в естественных науках, могут служить модели роста численности популяции. Простейшая модель такого рода (закон экспоненциального роста) была использована в XIX веке Т. Мальтусом.
- Однако эта модель не учитывала, что общий объем жизненных ресурсов накладывает естественные ограничения на динамику развития процесса.

• С учетом таких ограничений процессы роста описываются т.н. логистической моделью. *Погистическая модель* роста народонаселения была предложена П. Ферхюльстом (в этой модели предполагается, что прирост численности в каждый момент прямо пропорционален достигнутой численности и обратно пропорционален ее квадрату).

- Интересный пример дает исследование ирландского историка О'Рурка, в котором анализируются причины известного феномена в истории Ирландии, население которой увеличилось с 4 млн. в конце XVIII в. до 8 млн. в середине XIX в., а затем упало до 4 млн. в конце XIX в.
- Традиционное объяснение такой необычной динамики связывалось с "полосой картофельного голода" 1845-1848 гг., приведшего к смерти более миллиона ирландцев.



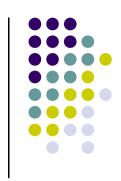
- Однако в последние два десятилетия доминировало другое объяснение этого феномена: уменьшение сельского населения Ирландии происходило бы тем же темпом, даже если бы Великого Голода в середине XIX в. не было, поскольку все дело было в неблагоприятных для Ирландии изменениях конъюнктуры на мировом рынке аграрной продукции, движении мировых цен в 1845-1876 гг. и неизбежных изменениях в структуре занятости сельского населения Ирландии.
- Для проверки этой гипотезы О'Рурк построил равновесную экономическую модель ирландского сельского хозяйства накануне Великого Голода

- В качестве экзогенных переменных в модели фигурируют цены на мясо и зерно, соответствующие реальной динамике второй половины XIX в.
- Модель учитывает 3 вида с/х угодий (пашни, пастбища и картофельные поля) и 4 фактора производства (рабочая сила, земля, капитал и накопления владельцев ферм).
- Модель показала, что внешние факторы могли привести к росту числа занятых в сельском хозяйстве Ирландии к началу XX в. не более чем на 18% или к падению не более чем на 14%, в то время как в реальности занятость сельского населения страны упала за эти полстолетия на 45%.
- Тем самым результаты имитационного моделирования отвергают новую гипотезу и могут рассматриваться как аргумент в пользу традиционного объяснения исторического феномена, основанного на доминирующей роли Великого Голода.

- Целая серия математических моделей аналитического типа была предложена в работах Ю. Бокарева.
- Одна из них посвящена анализу функционирования экономики СССР в 20-е годы в предположении, что в конце 1920 г. денежное обращение было бы полностью заменено натуральным обменом.
- Процесс обесценения денег и рост дороговизны в это время привели к тому, что эмиссия и цены оказались теснее связанными между собой, чем с производством и распределением.
- Возникла угроза отрыва цен и денежной массы от товарооборота. Могло ли уничтожение денег явится выходом из создавшегося положения?

- В 1920 г. на этой мере настаивал ряд видных государственных и партийных руководителей, требование отмены денег содержалось в резолюции III съезда ВСНХ.
- Одновременно натуральное распределение, отмена оплаты коммунальных услуг, медицинского обслуживания и обучения создавали благоприятные условия для отмены денег внутри экономической системы.
- К каким экономическим последствиям привело бы утверждение натурального обмена между городом и деревней? Для ответа на этот вопрос Бокарев обратился к построению системы дифференциальных уравнений, описывающих взаимоотношения между промышленностью и мелкими крестьянскими хозяйствами в условиях натурального обмена

- Модель в данном случае являлась аналитической, т.е. результаты моделирования — динамика объемов промышленной и сельскохозяйственной продукции получаются путем решения системы дифференциальных уравнений.
- Если обменивается вся продукция, экономическая система испытывает колебания вокруг положения равновесия с периодом около 10 лет.
- Если обменивается только часть продукции, то после короткого периода роста производства начинается снижение, а затем объемы продукции стабилизируются, совершая едва заметные колебания вокруг уровней равновесия (модель застойной экономики).

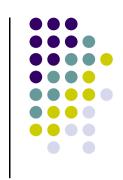

- Л.И.Бородкиным и М.А.Свищев изучали социальную мобильность в период нэпа, процессы дифференциации доколхозного крестьянства.
- Было показано, что эти процессы не вели к социальной «поляризации» деревни. При сохранении тенденций середины 20-х гг. доля середняков постепенно увеличивалась бы, стабилизируясь в первой половине 1930-х гг.

- При рассмотрении альтернатив социальноэкономического развития СССР в 20-30-е годы использовались и модели <u>статистического</u> типа. Так, в книге американских авторов Хантера и Ширмера рассмотрен альтернативный вариант развития сельского хозяйства (точнее, динамики производства зерна) в СССР в 1930-е гг.
- Авторы использовали основной инструментарий построения контрфактических моделей, используемый в работах зарубежных клиометристов регрессионные уравнения, позволяющие оценить зависимость между одним зависимым (результирующим) фактором и набором независимых факторов.

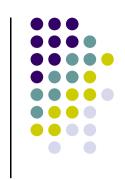
- Выбранная авторами регрессионная модель включает 2 показателя, влияющих на сбор урожая погодные условия и обеспеченность тягловой силой (л.с. на 1 га).
- Анализируются 4 регрессионных уравнения в соответствии с 4 имеющимися реконструкциями динамики производства зерна в стране в 1929-1940 гг. (один из этих рядов – официальная статистика, три других – реконструкции, полученные различными специалистами).
- Во всех случаях два учтенных фактора объясняют более 50% динамики колебаний производства зерна на рассматриваемом 12-летнем интервале (при этом оба фактора являются статистически значимыми).

- Получив коэффициенты, показывающие влияние погодных условий и тягловой силы на производство зерна, авторы переходят к рассмотрению альтернативной модели.
- Они отказываются от реальных данных, отражающих наращивание тягловой силы в 30-е гг. (а реальные данные соответствовали резкому падению поголовья лошадей при параллельном росте обеспеченности тракторами): в 1929 г. всего 1% тягловой силы приходился на механическую силу, а к 1940 г. вклад тракторов достиг 40%).

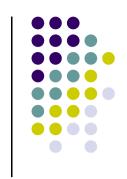
- В альтернативной модели авторы отталкиваются от ситуации конца 20-х гг. и аккуратно делают расчеты того, как росло бы поголовье лошадей при условии известных коэффициентов смертности и рождаемости этого поголовья.
- В результате получается, что к 1940 г. примерно на 40% вырастает поголовье лошадей. Это могло привести к 20% расширению посевных площадей при равномерном их наращивании на рассматриваемом интервале в 12 лет.
- Исходя из этих предположений можно получить расчетный показатель возможной динамики обеспеченности тягловой силой.



- Затем этот сконструированный фактор и реальный фактор климатических условий "подставляют" в модель, где коэффициенты были подсчитаны по реальным данным за 12 лет. В результате можно рассчитать для всех 4 вариантов модели, каким было бы производство зерна при отсутствии коллективизации, просто при продолжении тенденций конца 20-х гг.
- Как показала модель, примерно на 10% увеличилось бы производство зерна по сравнению с тем, что было получено в реальности в условиях коллективизации.


• Авторы получили самую нижнюю оценку развития по альтернативному варианту, поскольку модель не включает, например, фактор, который работал бы при всех вариантах развития — рост механизации сельского хозяйства, внедрение новых аграрных технологий (в модели они заморожены на уровне 1920-х гг.)

Конечно-разностные уравнения

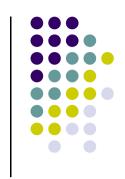

- Простейшее разностное уравнение можно получить в модели динамики численности популяции.
- Обозначим через N_i численность населения в момент времени i.
- Если нет ограничений со стороны внешней среды и миграция отсутствует, то в следующий момент времени (*i*+1), например, в следующем году, к численности населения надо добавить число родившихся и вычесть число умерших.

Конечно-разностные уравнения

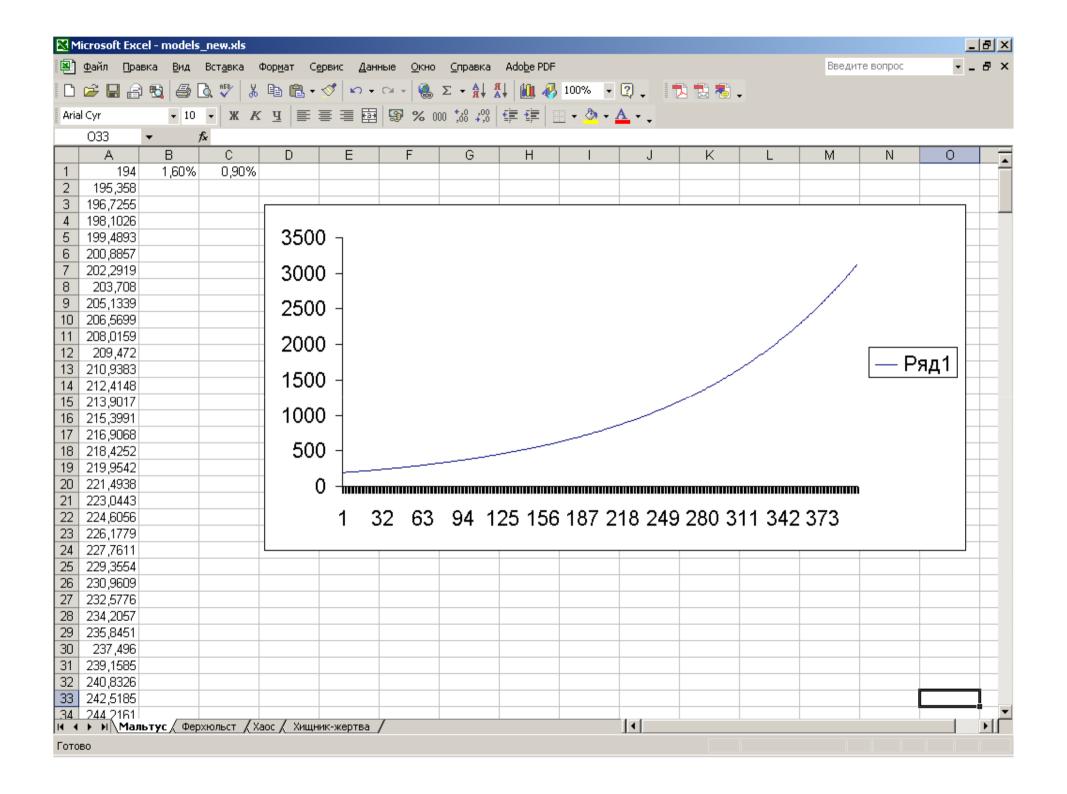
- Величина прироста за счет рождаемости задается выражением rN, где r – коэффициент рождаемости.
- Величина убыли за счет смертности задается выражением mN, где m- коэффициент смертности.
- Таким образом, в момент времени (i+1) численность населения N_{i+1} станет равной $N_i + r*N_i m*N_i$

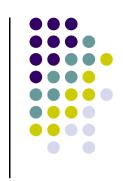
Конечно-разностные уравнения

• Таким образом, мы получили простейшее конечно-разностное уравнение динамики численности населения:

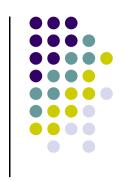

$$N_{i+1} = N_i + rN_i - mN_i$$

ИЛИ

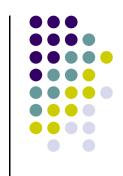

$$N_{i+1} = N_i + (r - m)N_i$$


где разность (r-m) – коэффициент прироста.

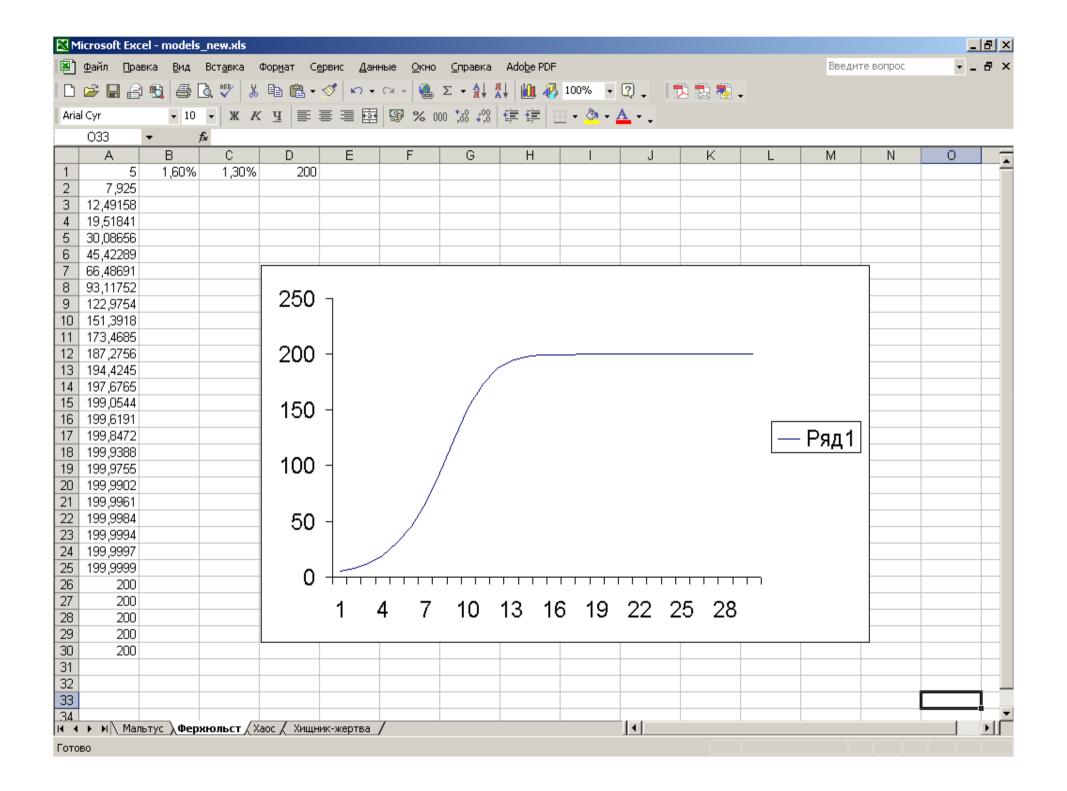
• Если этот коэффициент больше нуля (рождаемость выше смертности), население растет, если меньше нуля – убывает.

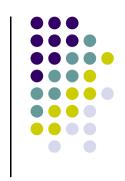


- Эта модель роста численности населения была предложена Т. Мальтусом. Она описывала неограниченный, экспоненциальный рост человечества.
- В результате был получен весьма неблагоприятный прогноз, связанный с невозможностью обеспечить жизненными ресурсами неограниченно растущее население.

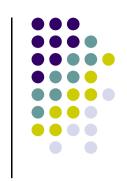


- Однако экспоненциальный рост не может продолжаться долго. Естественные ограничения на него накладывает внешняя среда, ресурсы которой не безграничны.
- В простейшем случае можно предположить, что коэффициент прироста не является постоянным, а убывает с течением времени, по мере роста населения.

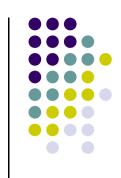

• К этому можно прийти в результате следующего рассуждения: изменение численности населения за некоторый промежуток времени складывается из прироста, обусловленного рождаемостью, убыли, обусловленной смертностью, а также дополнительной убыли, пропорциональной квадрату численности населения.

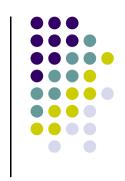


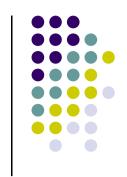
- Эта дополнительная убыль связана с повышением вероятности заболеваний и другими проявлениями "сопротивления среды".
- В результате получается модель, которая была предложена П. Ферхюльстом:


$$N_{i+1} = N_i + (r - m)N_i (N^* - N_i)/N^*$$

• Решение этого уравнения приводит к тому, что численность населения не растет неограниченно, а стремится к некоторой предельной величине N^* .




- График этого уравнения называется логистической кривой.
- Вблизи начальной точки его вид напоминает кривую экспоненциального роста, затем, после точки перегиба, кривая все ближе подходит к прямой, соответствующей предельной численности населения.


 Таким образом, система в данном случае имеет устойчивое (стационарное) состояние; этому состоянию соответствует прирост населения, равный нулю (рождаемость уравновешивается смертностью).

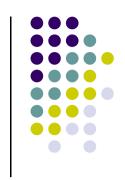
- Если динамических переменных больше одной, тогда и уравнений (дифференциальных или разностных) должно быть несколько, т.е. это система уравнений.
- В качестве примера системы двух уравнений рассмотрим известную модель Лотки-Вольтерра (в биологии известна как модель "хищник-жертва", в политологии как модель "народ-правительство", в истории как модель "бароны и крестьяне").

- Пусть сосуществуют два вида, две группы, две силы. Их численности или их влияния зависят друг от друга.
- Так, если количество "жертв" меньше нормы, "хищники" начинают вымирать, причем тем быстрее, чем меньше "жертв". Если же количество "жертв" больше определенного порога, число "хищников" начинает возрастать, опять-таки тем быстрее, чем больше "жертв".


• Эту закономерность можно записать таким образом:

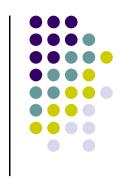
$$X_{i+1} = X_i + kX_i(\mathcal{K}_i - \mathcal{K}^*)$$

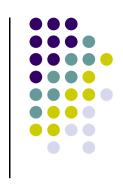
• Коэффициент k (k > 0) обозначает скорость увеличения числа "хищников", если число "жертв" больше порогового значения \mathcal{K}^* , или же скорость уменьшения числа "хищников", если число "жертв" меньше этого порогового значения.

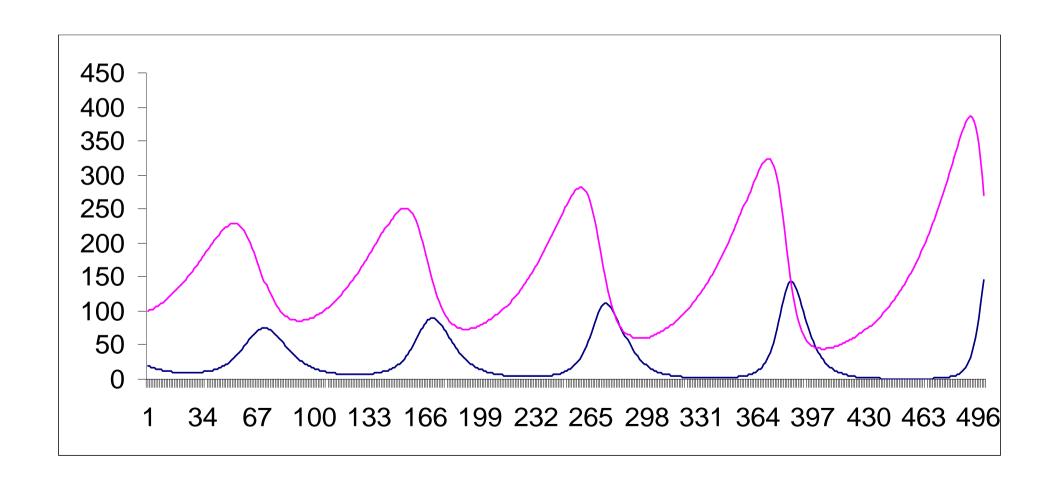

• С другой стороны, если число "хищников" меньше определенной нормы, число "жертв" начинает расти и тем быстрее, чем меньше "хищников"; а если число "хищников" превышает норму, число "жертв" начинает уменьшаться, причем тем быстрее, чем больше "хищников".

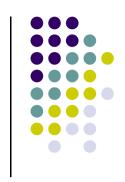
• Эту закономерность можно записать следующим образом:

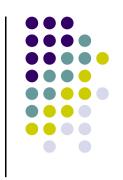
$$\mathcal{K}_{i+1} = \mathcal{K}_i + m\mathcal{K}_i(X^* - X_i)$$

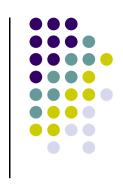

• Коэффициент m (m > 0) — скорость увеличения числа "жертв", если число "хищников" меньше порогового значения X^* , или скорость уменьшения числа "жертв", если число "хищников" больше этого значения.

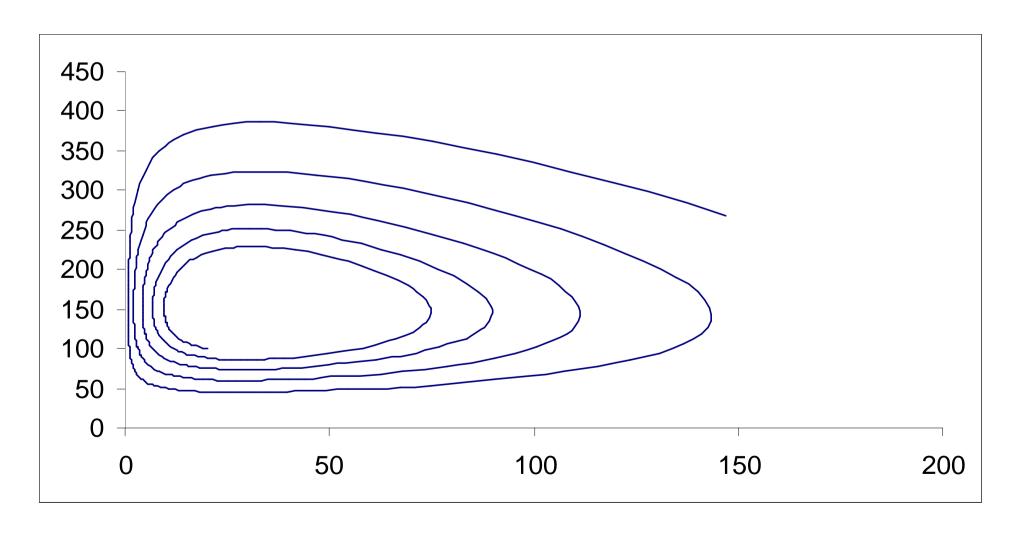

• Таким образом, можно записать следующую систему уравнений:

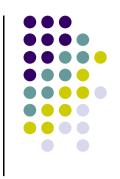

$$\begin{cases} X_{i+1} = X_i + kX_i(\mathcal{K}_i - \mathcal{K}^*) \\ \mathcal{K}_{i+1} = \mathcal{K}_i + m\mathcal{K}_i(X^* - X_i) \end{cases}$$

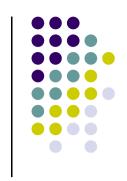

• Уже словесное описание модели обещает появление циклического решения.

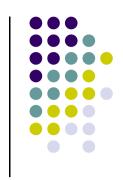

- Действительно, с ростом числа "хищников" выше нормы число "жертв" начинает уменьшаться и со временем становится меньше определенного минимума, что, в свою очередь, вызывает уменьшение числа "хищников".
- Однако, когда число "хищников" уменьшится настолько, что станет меньше нормы, это вызовет рост числа "жертв", что повлечет за собой рост числа "хищников" и т.д...

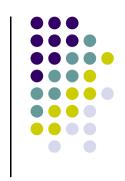




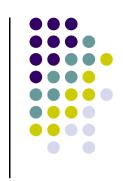

• Число "хищников" подвержено периодическим колебаниям вокруг положения равновесия (*X**). Число "жертв" также испытывает периодические колебания около положения равновесия (*Ж**) с такой же частотой, но с другой амплитудой, и его график сдвинут относительно первого графика.

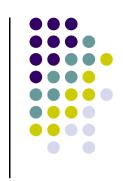

В плоскости X – Y (фазовой плоскости)
 системы уравнений для модели "хищникжертва" можно видеть движение по спирали,
показывающей согласованные колебания в
значениях обеих переменных.

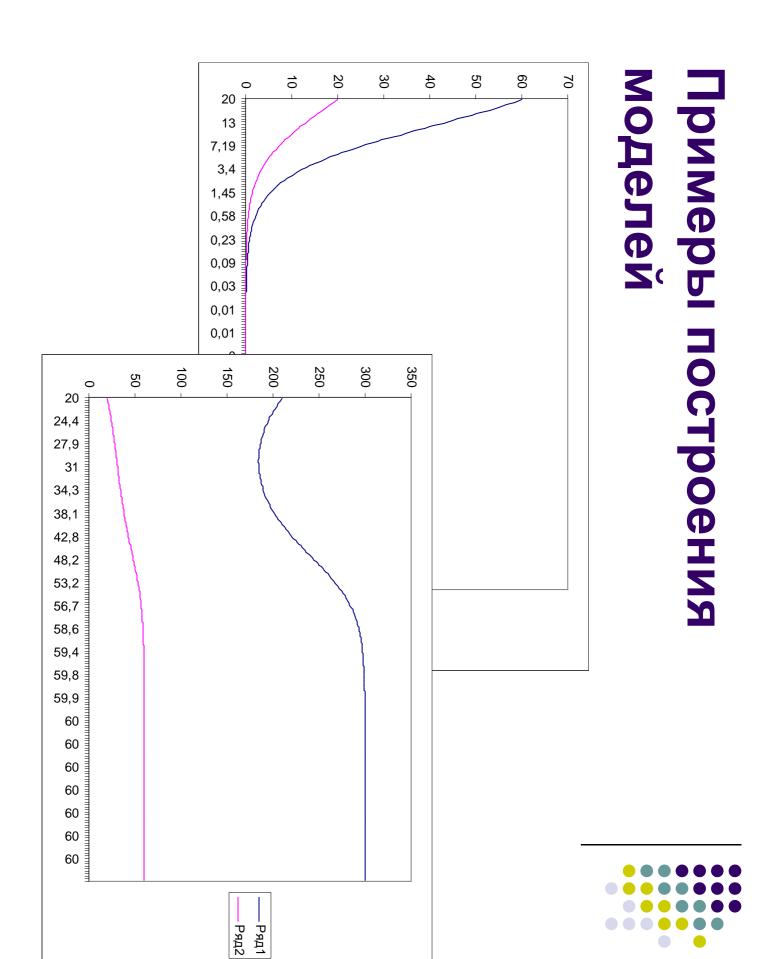


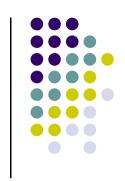

- Модель Лотки-Вольтерра может описывать различные динамические процессы.
- Так, если поменять знак у параметра *m* на отрицательный, система будет описывать уже не модель "хищник-жертва", а положительное взаимодействие двух популяций (в биологии симбиоз, в политологии или социологии кооперативное поведение политических сил или социальных групп).

 Если, наоборот, поменять знак у параметра k на отрицательный, получим модель конкуренции или борьбы – антагонистического поведения.

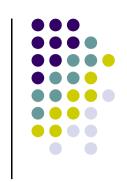

- Эти возможности оказались довольно перспективными для использования модели при изучении социальной динамики.
- Большую известность приобрели работы немецкого ученого В. Вайдлиха. Он разработал систему моделей изучения динамики социально-экономических и политических факторов (производство и потребление товаров, инвестиции и т.п.)


• Модель Лотки-Вольтерра была использована В.Вайдлихом для изучения отношений между "народом" и "правительством" (или, например, парламентом и правительством). Одной переменной в этой модели является степень силы правительства, а другой переменной – степень политического влияния народа (парламента).

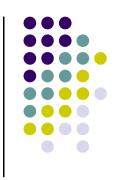

• Если использовать эту модель как модель отношений "хищник-жертва", когда правительство проводит репрессивную политику, которой не противодействует народ, то, как это и должно следовать из свойств модели, политическая ситуация испытывает циклические изменения — колебания около положения равновесия.



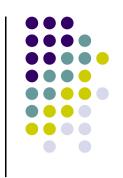
- При наличии взаимного "сотрудничества" (кооперативного поведения) сильное правительство поддерживает демократические институты общества, слабое стремится ограничить их влияние, т.е. правительство не учитывает общественное мнение и подавляет волеизъявление народа.
- И наоборот: если влияние народа велико, он поддерживает деятельность правительства; если невелико политика правительства встречает противодействие.



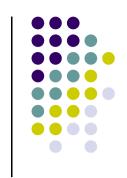
 В этом случае система имеет два состояния равновесия: сильную демократию с сильным правительством и значительной ролью народа или противоборствующую демократию со слабым правительством и столь же слабым общественным влиянием.



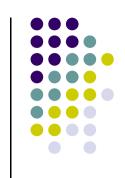
- Наконец, при наличии конкуренции (антагонистического поведения) правительства и народа сильное правительство стремится подавить демократические институты, а слабое правительство поддерживает их рост.
- С другой стороны, значительное влияние народа приводит к уменьшению роли правительства, а при слабом влиянии народа требуется сильное правительство.

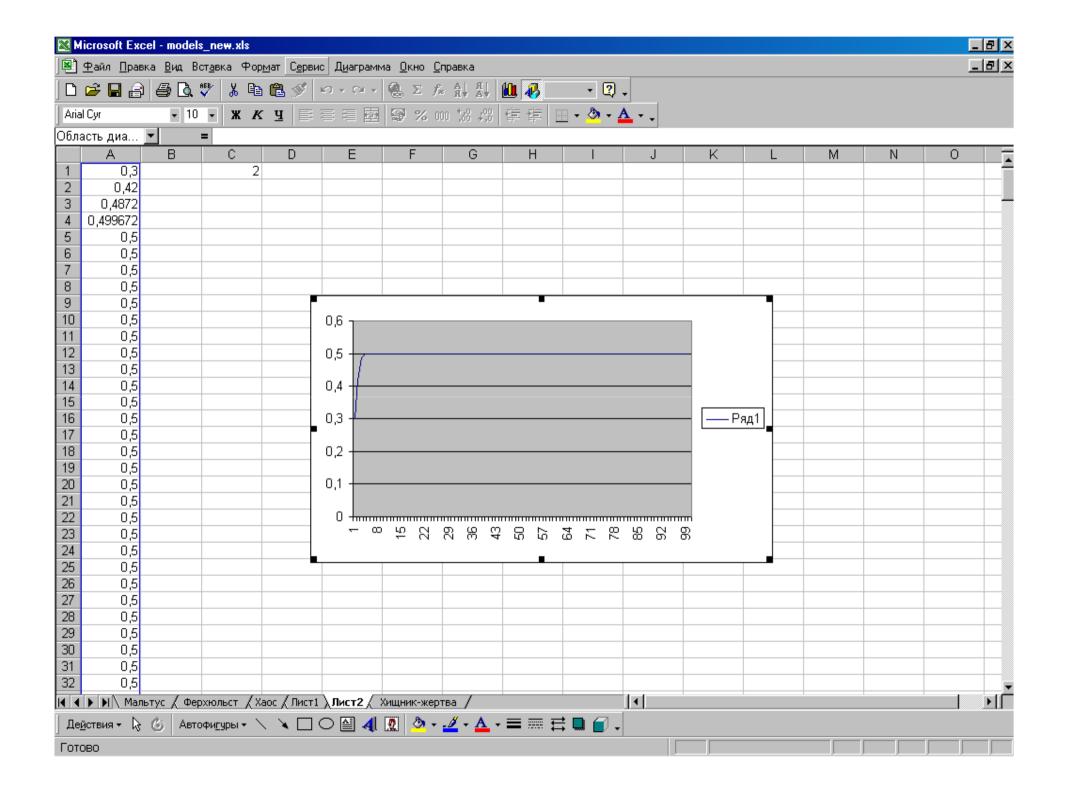


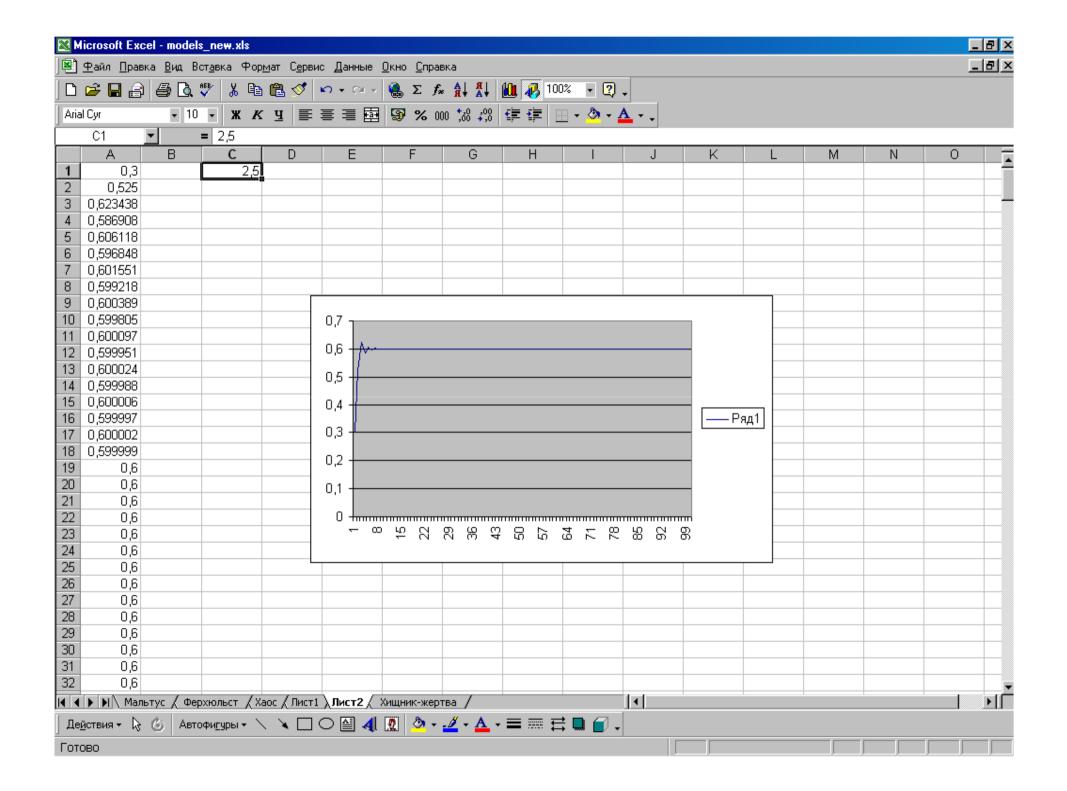
• Здесь тоже имеется два состояния равновесия: это либо диктатура с сильным правительством и слабым народом, либо анархия, при которой народ саботирует решения слабого правительства.

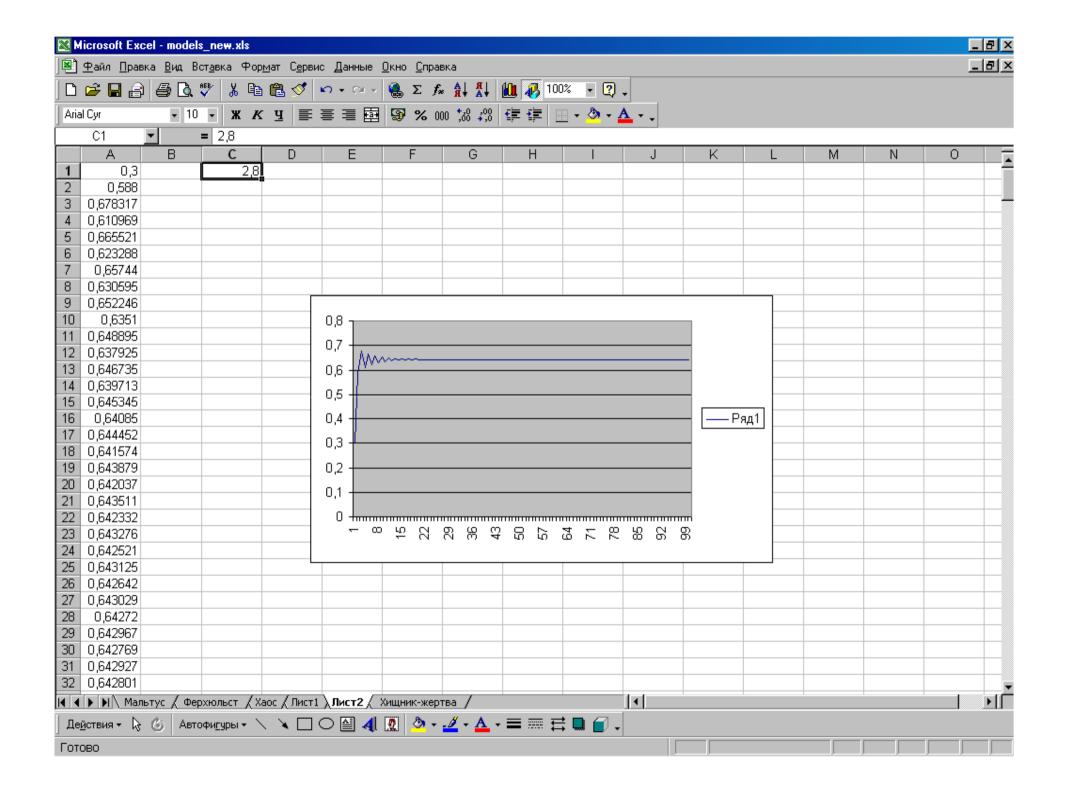


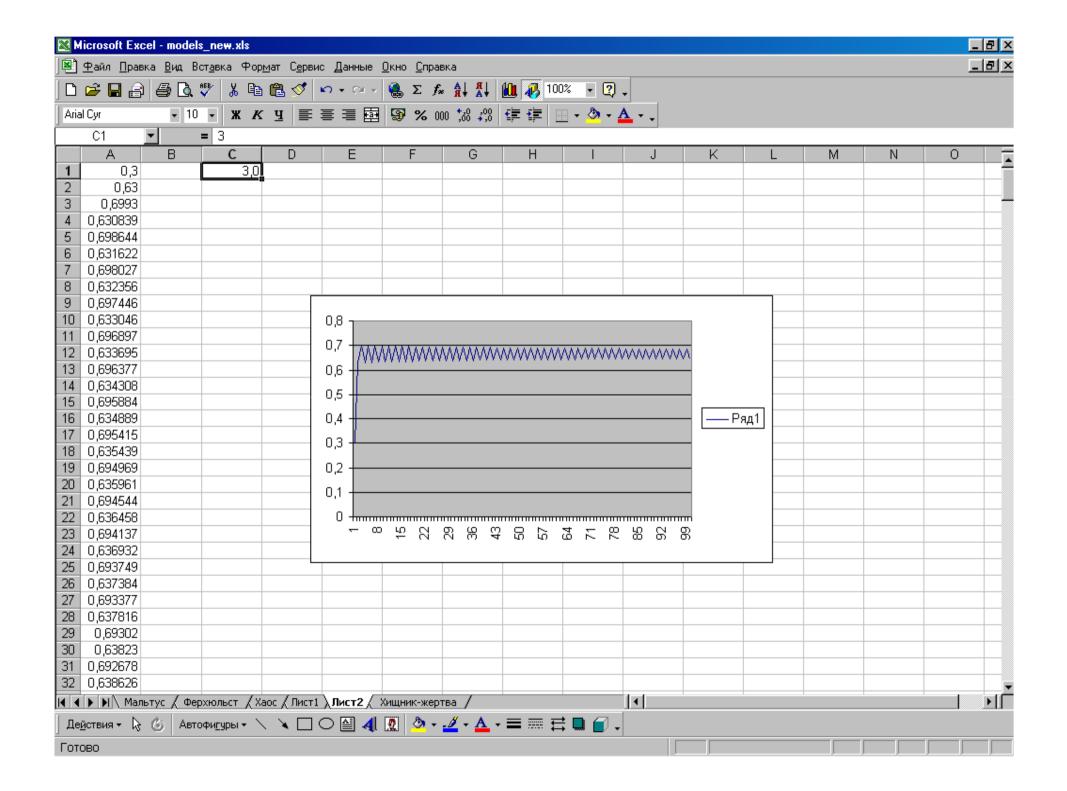
- Логистическое отображение возникает и в более приближенной к истории модели социальной мобилизации.
- Эта модель показывает, как быстро массы людей включаются в общественные движения (митинги, петиции, демонстрации, марши протеста, городские беспорядки и т.д.).

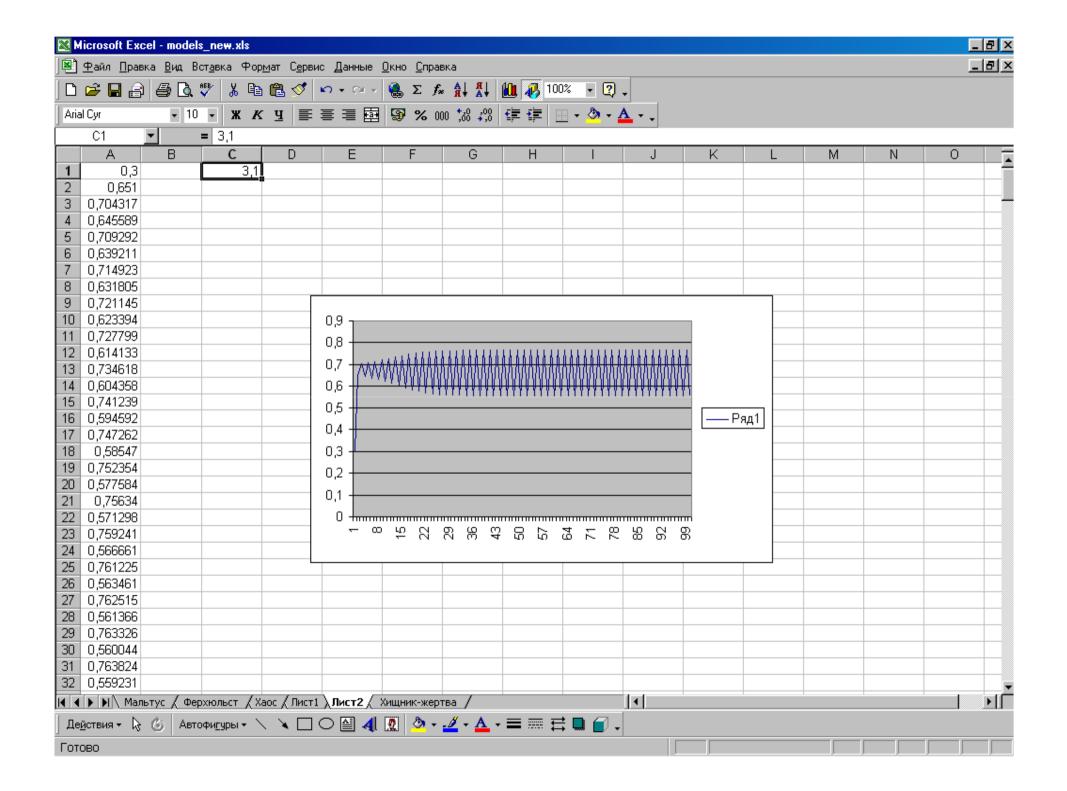

- Модель была названа "пороговой", поскольку у каждого человека существует некоторый порог вступления в массовую акцию для этого необходимо, чтобы в ней участвовала какая-то существенная часть его окружения.
- Другой порог существует и для выхода из акции – если слишком много окружающих занимаются тем же самым. Поэтому ясно, что если X – это доля участников массового движения, ее малые значения должны расти, а близкие к 100% – падать.

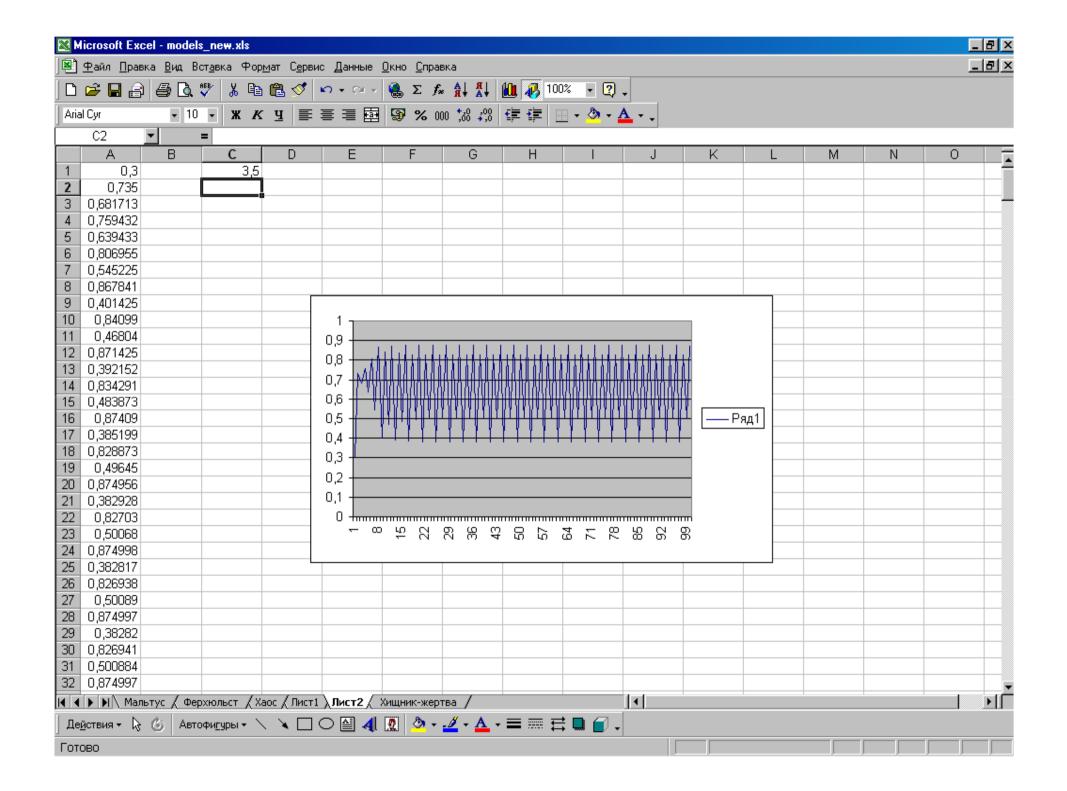

 Таким образом, модель социальной мобильности основана на изучении "поведения" решений следующего разностного уравнения:

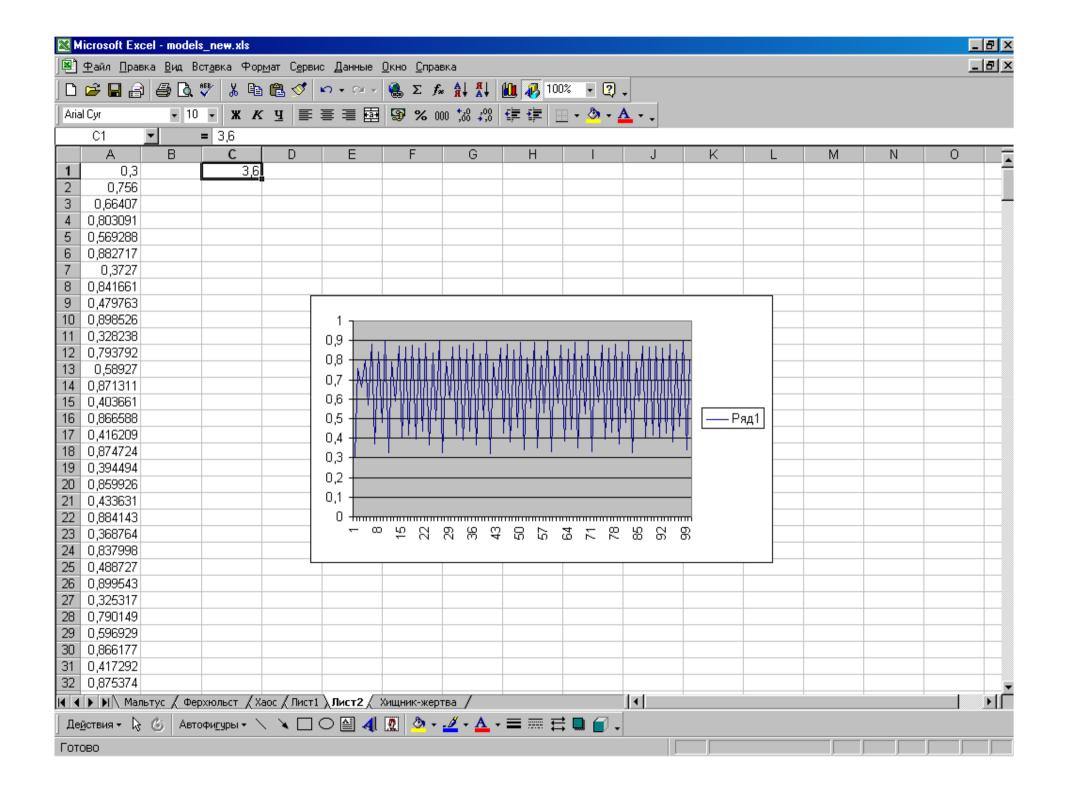

$$X_{i+1} = CX_i(1-X_i)$$

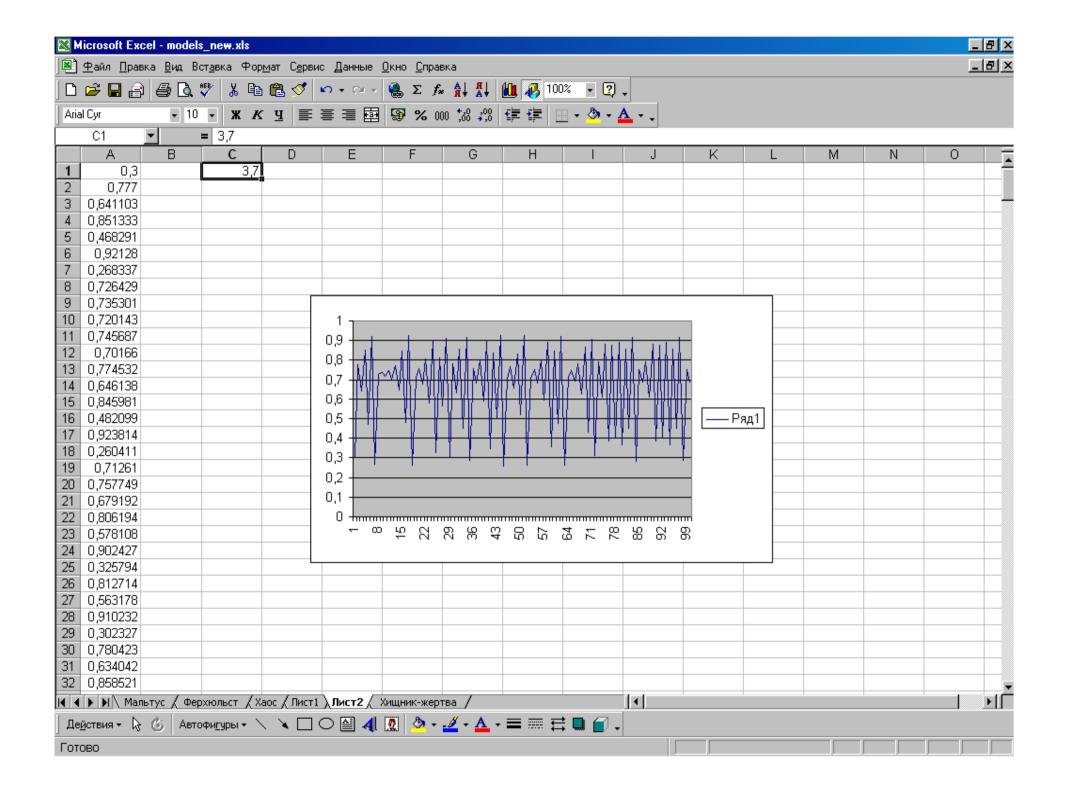

• Здесь предполагается, что X_i — величина, находящаяся в диапазоне [0; 1], C — управляющий параметр, значения которого интерпретируются как мера "политизированности" общества.

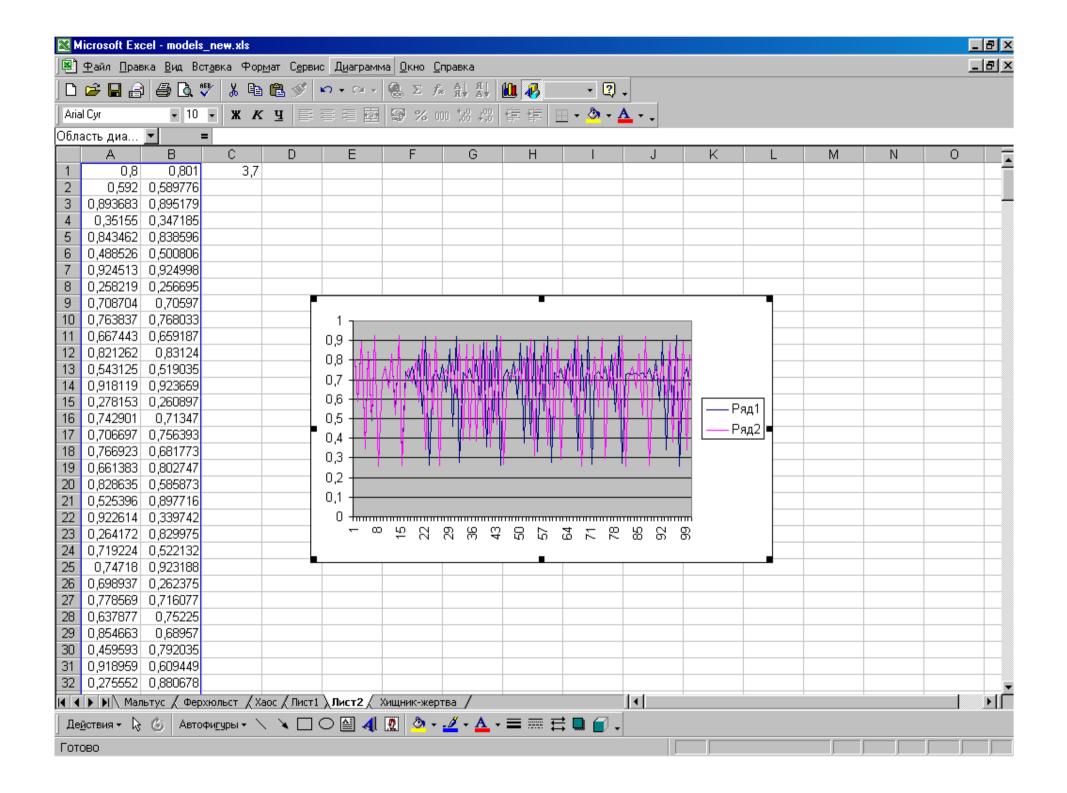


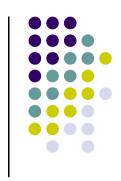

- Еще одной интерпретацией может быть, например, рынок товаров, где *X* доля рынка, захваченная новинкой.
- Параметр С здесь моделирует некоторую силу, управляющую внедрением новинки (например, рекламу).

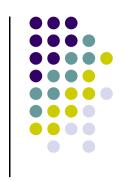


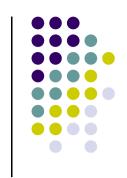






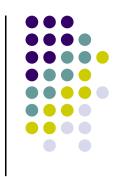





• Важнейшими характеристиками динамики системы являются положения равновесия и предельные циклы. Они называются *аттракторами* (притягивающими множествами).

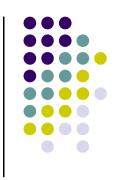
- Если менять параметры структурноустойчивой системы, то ее поведение также будет меняться, но его качественные параметры будут достаточно устойчивы.
- Однако при достижении критических величин параметров системы в ней происходит бифуркация – поведение системы качественно меняется.

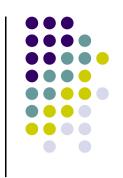
- Например, при прохождении точки бифуркации из <u>состояния равновесия</u> может возникнуть <u>колебательный периодический режим</u>.
- Когда же система попадает в <u>хаотический</u> <u>режим</u>, ее поведение становится апериодическим и кажется случайным, подверженным непредсказуемым внешним воздействиям.


- На самом деле это поведение не является случайным, оно определено законом функционирования системы, но прогнозировать поведение системы в хаотическом состоянии невозможно.
- Изучением закономерностей поведения сложных систем занимается новый быстро развивающийся раздел математики синергетика (или теория самоорганизации).

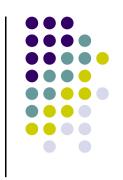
МОДЕЛИРОВАНИЕ ИСТОРИЧЕСКИХ ПРОЦЕССОВ

Моделирование неустойчивых процессов. Синергетический подход

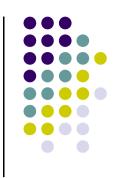


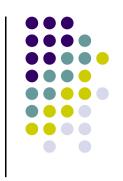

• В то время, как изучение эволюционных процессов является достаточно традиционной областью математического моделирования, подходы к моделированию процессов, претерпевающих скачкообразные изменения, стали складываться сравнительно недавно.

- Синергетика возникла в 1970-х гг. Ее развитие связывают с именами таких известных ученых как И. Пригожин (лауреат Нобелевской премии), Г. Хакен, С.П. Курдюмов и др.
- Математический аппарат синергетики разработан в рамках теории нелинейных дифференциальных уравнений.



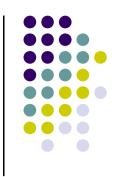
• Синергетика изучает динамику развития неустойчивых ситуаций, в которых малые (нередко – случайные) воздействия могут вызвать большие последствия. Процесс в результате может выйти на новую траекторию, устремиться к новому аттрактору.


- Иногда вместо термина синергетика используются термины *теория хаоса* или *теория катастроф*, которые появились в математике при изучении нелинейной динамики.
- Катастрофа (*бифуркация*) происходит тогда, когда описываемая соответствующими уравнениями система скачком переходит из одного состояния равновесия в другое.

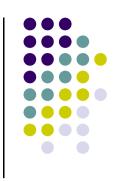


• Качественное исследование такой динамической системы, существенно зависящей от значений параметров в некоторых "критических" областях, предполагает описание всех возможных бифуркаций и аттракторов (точек или предельных циклов), к которым "притягиваются" траектории системы.

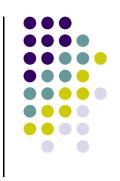
• В популярных изданиях 1970-х гг. теория катастроф трактовалась как переворот в математике, сравнимый с открытием дифференциального и интегрального исчисления.

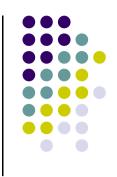

• Применения теории катастроф, подкрепленные многочисленными экспериментальными данными из самых разных наук, образовали самостоятельную область науки, называемую *синергетикой* или теорией самоорганизации

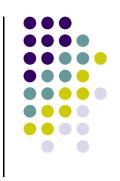
• Методы синергетики нашли применение в задачах моделирования историкодемографических процессов (С.П. Капица, Г.Г. Малинецкий), в исследованиях длинных волн экономического развития (С.Ю. Малков, П. Турчин, С.А. Нефедов), курсовой динамики на Петербургской бирже начала ХХ в., динамики стачечных волн (Л.И. Бородкин и соавторы).

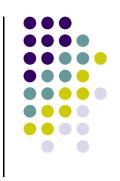

- Подходы синергетики основаны на таких понятиях как нелинейность, неустойчивость, непредсказуемость, альтернативность развития.
- Синергетика предлагает каждой отрасли научного знания систему концепций, категорий и методов, дающих возможность адекватно применить синергетический подход в конкретных научных исследованиях.

- Применительно к истории мы должны прежде всего ответить на вопрос существуют ли такие явления, как непредсказуемость, выбор и т.д. в историческом процессе. Или, быть может, в истории все происходит достаточно гладко, стабильно, предсказуемо?
- От нашего понимания, насколько самой истории внутренне присущи проблемы синергетики, зависит успех применения здесь ее методов.

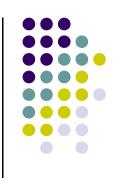

- Естественно, опыт современной исторической науки подсказывает нам положительный ответ.
- История это отнюдь не плавный процесс или однонаправленное "прогрессивное" развитие.
- Здесь не требуется особых доказательств понятно, что в истории есть периоды, исключительно насыщенные случайными, взрывными процессами (это революции, стихийные народные движения и т.д.).


- Оказывается, такие же взрывные процессы присущи и явлениям культуры.
- Несколько лет назад вышли последние книги известного русского культуролога, историка, филолога Юрия Михайловича Лотмана, которые как раз были посвящены соотношению в культуре предсказуемых и непредсказуемых процессов, роли случайности в ходе культурного развития.

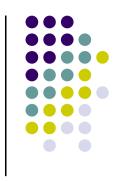

 Динамика исторического процесса предусматривает, по Лотману, смену (возможно, несинхронную в различных пластах) процессов постепенного развития и хаотических участков с разнообразием непредсказуемых исходов, "точек бифуркации", "перекрестков", "минут роковых".

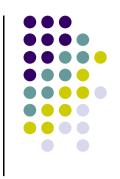


• Как формулирует Лотман, "случайное и закономерное перестают быть несовместимыми, а предстают как два возможных состояния одного и того же объекта. Двигаясь в детерминированном поле, он предстает точкой в линейном развитии, попадая во флуктуационное пространство – выступает как континуум потенциальных возможностей со случаем в качестве спускового устройства.

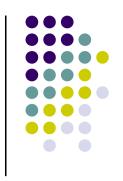


• Проливая свет на общую теорию динамических процессов, идеи И. Пригожина представляются весьма плодотворными и применительно к историческому движению. Они легко эксплицируются в связи с фактами мировой истории и ее сложным переплетением спонтанных бессознательных и личноосознанных движений".

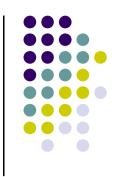

• Как отмечает Ю.М. Лотман в своих последних работах, именно точки выбора и момент непредсказуемости придают историческому процессу содержание, информативность, иначе, будучи абсолютно предсказуемым, он оказывался бы и абсолютно избыточным, так как по первому "кадру" какой-нибудь "демон Лапласа" мог бы определить все остальные.



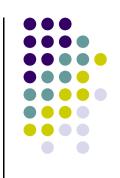
- Поскольку выбор осуществляется людьми, то именно "человеческий фактор", ранее почти игнорируемый при научном анализе, делается его главным предметом.
- После принятия такой научной парадигмы, "картина мира неслыханно усложняется, и искусствоведение, культуроведение, да и наука о человеке в целом, из области научной периферии превращается в общенаучный методологический полигон...".



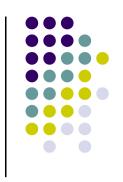
• Таким образом, на первом плане в рассмотрении историка оказываются люди в момент совершения осознанного выбора, их общекультурная и субъективно-личностная ответственность за него, поведенческий текст в единстве с сознанием человека.


 Лапласовский детерминизм. Роль детерминизма в истории очень велика он сформировал взгляд на историю, как на непрерывную цепочку жестко связанных причин и следствий, на киноленту, которую можно прокручивать в обоих направлениях.

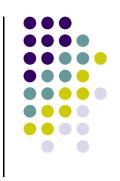
• Между тем, уже с 30-х гг. наряду с классической механикой в физике утвердилась иная теория, описывающая не менее широкий класс т.н. стохастических (случайных) процессов, подчиняющихся не детерминистским, а статистическим законам. Причину появления случайности в системе видели тогда в присутствии в ней большого числа степеней свободы.


- При этом не было сомнений, что движение самих частиц системы в соответствии с детерминистскими законами не содержит ничего случайного.
- Но оказалось, что большое число степеней свободы вовсе не необходимое и не достаточное условие того, что система является статистической.

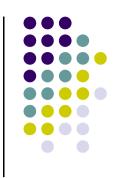
- Были построены простейшие механические системы, в которых движение даже одной частицы подчиняется вероятностным законам. Причина этого в неустойчивости траектории частицы, в результате чего даже бесконечно малое возмущение быстро приводит к тому, что частица значительно отклоняется от предсказанной траектории.
- Более того, если можно было бы "прокрутить" это же движение назад по времени, то частица бы не вернулась на прежнюю траекторию.

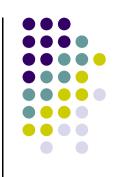


- Явление хаоса присуще только сложным, нелинейным системам (число уравнений, описывающих поведение таких систем должно быть больше двух).
- Для систем с одной степенью свободы существуют устойчивые состояния (аттракторы) двух типов: фокусы (точки) и предельные циклы.
- При переходе к трехмерному фазовому пространству в "семье" аттракторов происходит "прибавление", непосредственно связанное с появлением хаоса.



- Притягивающие множества нового типа называются "странными аттракторами" и характеризуются тем, что несмотря на приближении траектории с течением времени к притягивающему множеству, структура аттрактора в многомерном пространстве настолько сложна, что движение точки вдоль самого аттрактора может выглядеть совершенно случайным.
- Существование странного аттрактора всегда означает присутствие локальной неустойчивости


• Для моделирования динамики нестационарных исторических процессов чрезвычайно интересными представляются закономерности перехода системы в режим странного аттрактора ("сценарий хаотизации").


- Эволюция перехода из устойчивого состояния в неустойчивое включает следующие стадии: равновесие, возникновение периодических колебаний, удвоение периода, потеря устойчивости удвоенного цикла и появление сложных непериодических колебаний, очень чувствительных к незначительным изменениям начальных условий.
- Переход в режим странного аттрактора делает процесс случайным возникает хаос.

- Проблема неустойчивости сложных систем является также предметом изучения теории диссипативных структур, разработанной нобелевским лауреатом И.Пригожиным и его школой.
- Пригожин рассмотрел воздействие случайных колебаний, которые при наличии положительных обратных связей могут стать достаточно большими и привести к неустойчивости системы, разрушению существующей структуры и переходу в новое состояние.

- При этом возможен переход и на более высокий уровень упорядоченности, называемый диссипативной структурой. Возникает эффект *самоорганизации*.
- Исследуя динамику неравновесных систем, Пригожин отмечает: "Когда система, эволюционируя, достигает точки бифуркации, детерминистическое описание становится непригодным. Флуктуация вынуждает систему выбрать ту ветвь, по которой будет происходить дальнейшая эволюция системы..."