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Preface

The aim of this book is to demonstrate that quantum-like (QL) models, i.e., models
based on the mathematical formalism of quantum mechanics (QM) and its general-
izations, can be successfully applied to cognitive science, psychology, genetics, the
economy, finances, and game theory.

This book is not about quantum mechanics as a physical theory. The short review
of quantum postulates has merely historical value: quantum mechanics is just the
first example of successful application of non-Kolmogorovian probabilities, the first
step towards a contextual probabilistic description of natural, biological, psycholog-
ical, social, economic or financial phenomena. I have developed a general contextual
probabilistic model (Växjö model) that can be used to describe probabilities in both
quantum and classical (statistical) mechanics as well as in the above-mentioned phe-
nomena. This model can be represented in a QL way, namely, in complex and more
general Hilbert spaces. In particular, quantum probability is totally demystified:
Born’s representation of quantum probabilities by complex probability amplitudes,
wave functions, is simply a special representation of this type. QL representation of
data is very convenient; it can be used in any domain of science. I have presented
[180, 198] a fundamental conjecture that some biological systems might develop
the ability to create QL representations of external and internal worlds. Start-
ing with this conjecture, QL models of cognitive and psychological processes are
developed.

A simple statistical test of QL probabilistic behavior based on interference of
probabilities was elaborated [180, 176] and corresponding experiments have been
performed by Conte et al. [66, 67]. The conjecture on the QL processing of infor-
mation in the brain was confirmed: ensembles of students performing incompati-
ble recognition tasks for recognition of ambiguous figures demonstrated nontrivial
interference of probabilities, see Chapter 6.

Recently a professor of cognitive psychology, Jerome Busemeyer, conjectured
that probabilistic data obtained in famous experiments on the so-called disjunction
effect by Tversky and Shafir [295, 275] cannot be described by the conventional
Markovian probabilistic model, and he speculated that the disjunction effect can
be described by quantum formalism. This viewpoint was elaborated in works by
Busemeyer et al. [48–50]. We recall that the disjunction effect is by definition (given
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by Tversky and Shafir1) an exhibition of violation of Savage’s Sure Thing Principle
(STP) [271]. The latter is the basis of the modern theory of rational decision making.
In particular, by Savage’s axiomatics, economic processes are based on actions of
rational agents of the market (in particular, of the financial market), i.e., on the STP.
In this book I apply the contextual approach to the disjunction effect. A QL model is
presented in Chapter 7; see [208, 206, 213, 209] for original publications. It seems
that, in spite of Busemeyer’s conjecture, the conventional quantum formalism is too
restrictive to describe the disjunction effect. It is impossible to describe this effect
not only by classical (Kolmogorovian) probability theory, but even by conventional
quantum probability (defined by Born’s rule in Dirac–von Neumann’s formalism
of QM). I apply a generalization of the QM-formalism that is naturally generated
in the contextual probabilistic framework. My model is based on the assumption
that, in the process of evolution, cognitive systems developed the ability to repre-
sent contexts by probabilistic amplitudes (complex and even more general). Such
amplitudes form a linear space. Thus the brain is able to linearize probabilistic
images of contexts. The dynamics is described by a linear evolution equation, a
mental Schödinger’s equation. Consequently, decision making is described mathe-
matically by quantum (and more general QL) theory, see, e.g., Holevo [147, 148],
Helstrom [141] or Marley and Hornstein [238]. We also mention that the interest
in applications of quantum and QL methods to decision making in cognitive sci-
ence, psychology and economics is very large, see publications by Danilov and
Lambert-Mogiliansky [73–76] (utility theory), La Mura [223] (utility theory) (see
also [222]), Franco [109–114] (cognitive psychology), and Haven and Khrennikov
[137] (a fundamental work covering all possible paradoxes in cognitive psychology
related to the disjunction effect).

The crucial point is that QL probabilistic behavior, e.g., in research on brain func-
tioning, need not be a consequence of special physical conditions. For example, the
hot brain can still produce interference of probabilities. This is a significant advan-
tage of the QL approach compared with quantum physical reductionism. I have
named this approach the QL paradigm. A detailed presentation of this paradigm can
be found in the first chapter of this book.

This book is truly intended to be accessible to psychologists and researchers
working in cognitive science, sociology or economics. Therefore, the first chapter
provides a detailed review of all the basic ideas and methods used in the following
chapters, without containing any mathematics. It might even be useful for philoso-
phers interested in quantum foundations and the QL description of physical, biolog-
ical, and mental phenomena.

Växjö, Moscow Andrei Khrennikov
2009

1 See also the excellent experimental work of Croson [71] confirming and generalizing results
[295, 275].
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Chapter 1
Quantum-like Paradigm

The Quantum-like paradigm (QL) is based on understanding that the mathematical
apparatus of quantum mechanics (and especially quantum probability) is not rigidly
coupled with quantum physics, but can have a wider class of applications.

1.1 Applications of Mathematical Apparatus of QM Outside
of Physics

Recall that differential and integral calculi were developed to serve classical New-
tonian mechanics. However, nowadays nobody is surprised that these tools are
widely used everywhere – in engineering, biology, economics, . . . . In the same
way, although the mathematical apparatus of quantum mechanics was developed
to describe phenomena in the microworld, it could be applied to the solution of
various problems outside physics.

One of the interesting problems is to apply quantum probability, e.g., to cognitive
science or to financial markets. The main distinguishing features of quantum prob-
ability is its representation by the complex probability amplitude. In the abstract
approach, such an amplitude is represented by a normalized vector in a complex
Hilbert space, while the so-called mixed state is represented by a density matrix.
Probability (which is compared with experimental relative frequencies) is given
by Born’s rule. For example, for measurement of the coordinate x of a quantum
particle, the probability of finding it at the point x = x0 is equal to the square of the
absolute value of the wave function at this point.

The main (merely psychological) barrier in applications of QL models outside
quantum physics is a rather common opinion that the “unusualness” of the quantum
formalism (compared with, e.g., classical statistical mechanics) is an exhibition of
“unusualness” of quantum systems. Such rather mystical things as quantum non-
locality and death of realism are firmly coupled to the modern interpretation of
quantum mechanics (in particular, through Bell’s theorem and other “no-go” theo-
rems). It seems that quantum formalism cannot be applied to “usual systems” (e.g.,
macroscopic biological systems or huge social systems), because in this case it is not
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2 1 Quantum-like Paradigm

easy to accept death of realism1 or any sort of nonlocality. For instance, attempts to
describe the brain’s functioning by means of QM typically induce heavy discussions
on time, space, and temperature scales. The aim of such scale studies is to couple
the brain’s scales to quantum scales.

My aim is to show that such a reduction to quantum physical scales is totally
unnecessary. The hot macroscopic brain might be able to process information in a
quantum-like way, exhibiting, e.g., the interference of probabilities of alternatives.
Moreover, any sufficiently complex biological, social, or financial system might
exhibit quantum-like probabilistic features. I shall explain the source of such fea-
tures a little bit later after the discussion on quantum randomness and probability.
At the moment I just point out contexuality as the main source of quantum-like
probabilistic behavior.

1.2 Irreducible Quantum Randomness, Copenhagen
Interpretation

During the past 70 years the development of quantum mechanics has been charac-
terized by intense debates on the origin of quantum randomness and in particular
on possibilities to reduce it to the classical ensemble randomness. For example, von
Neumann was convinced that quantum randomness is irreducible, but Einstein had
the opposite view on this problem: for him the discovery of quantum mechanics
was merely a discovery of a special mathematical formalism (quantum formal-
ism) for description of a special incomplete representation of information about
microsystems.

According to the Copenhagen interpretation of QM a pure quantum state (wave
function) describes an individual quantum system, not an ensemble of systems in
the sense of classical probability. As a consequence of such an “individual interpre-
tation”, a concrete physical system, e.g., an electron, can be prepared in a physical
superposition of pure states.

In the majority of textbooks on QM we can read about, e.g., an atom in a super-
position of different energy states2, or an electron in a superposition of spin-up and
spin-down states; in the famous two-slit experiment a photon is in a superposition
of passing through both slits.

An attempt to apply the mathematical formalism of QM outside of the microworld
in combination with the Copenhagen interpretation would create obvious difficul-
ties: it is not easy to imagine a macroscopic system, e.g., in economics, that is
in a real, physical, superposition of two states. Of course, I am well aware of the
existence of macroscopic quantum systems as well as of the attempts to use the
Copenhagen interpretation even in this case – e.g., by Legget in superconductivity,

1 For example, neurons in the brain definitely have objective properties.
2 Unlike in QM, in classical mechanics the energy of a particle can (at least in principle) be exactly
determined.
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by Zeilinger in the two-slit experiments for macroscopic systems, by De Martini in
experiments with “macroscopic Schrödinger cats” etc.

It is well known that such attempts to proceed with the Copenhagen interpre-
tation for macroscopic quantum systems do not provide a clear physical picture
of the phenomena. One of the possibilities is to use de Broglie’s wavelength for
characterization of the wave features of a macroscopic system. Since it is very small
for a large system, it is always possible to say that, although a macroscopic system
has wave features, they are hardly observable.

This kind of compromise is hardly satisfactory as a solution to a conceptual
problem, especially for justification of applications outside quantum physics, e.g.,
in psychology or economics. Moreover, as already pointed out by Pauli in the early
times of QM, any attempt to interpret the wave function as a physical wave clashes
against the fact that, for most interesting physically systems, these wave functions
are defined in a multidimensional mathematical space.3

Thus the supporters of the wave–particle duality face the paradox of believing
in a physical wave in a nonphysical space (already in the case of a two-particle
system).

1.3 Quantum Reductionism in Biology and Cognitive Science

As a consequence of the above-mentioned difficulties with the interpretation of
macroscopic quantum systems, a popular attitude today in attempts to apply quan-
tum mechanics (e.g., in biology) is to proceed beyond conventional (e.g., biological)
models that operate with states of macroscopic systems.

For example, in cognitive science a group of researchers (e.g., Penrose [249,
250] and Hameroff [128, 129]) developed the reductionist approach to the brain’s
functioning. They moved beyond the conventional neuronal paradigm of cognitive
science and tried to reduce processing of information in the brain to quantum micro-
processes – on the level of quantum particles composing the brain. Penrose repeated
many times that a neuron (as a macroscopic system) could not be in a physical
superposition of two states: firing and nonfiring.

As was already mentioned, the majority of attempts to apply the mathematical
formalism of quantum mechanics outside physics were based on the reduction of
the processes under consideration to some underlying quantum processes in the
microworld. This reductionist approach was heavily based on the following argu-
ment: since everything in this world is composed of quantum particles, any kind of
process might be (at least in principle) reduced to a quantum process.

3 The wave function of, e.g., a pair of electrons is defined not on physical space described mathe-
matically by the cartesian product of 3 real lines, but on configuration space, which is the cartesian
product of 6 real lines. Thus, Schrödinger already understood well that two electrons cannot be
embedded in physical space. Therefore he gave up with his interpretation of the wave function
as charge density. In principle, already at this stage one might start to speak about “quantum
nonlocality”, i.e., without any reference to Bell’s inequality.
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The unification dream is in principle correct, and it has played an important role
in the development of natural sciences; in this spirit any attempt to apply quantum
mechanics to, e.g., cognitive science should be welcome. However, it is very diffi-
cult (if possible at all) to establish a natural correspondence between conventional
macroscopic models and underlying quantum models.4 There is a huge difference
in scales of parameters in those models. Moreover, even in quantum physics the
correspondence principle is vaguely formulated and not totally justified and, on the
other hand, even in classical physics, the unification dream is far from being accom-
plished in spite of the important successes of statistical mechanics in the reduction
of thermodynamics to mechanics. For example, structures such as crystals, which
are relatively simple in comparison with biological structures, at the moment have
not been deduced from first principles in either classical or quantum physics.

1.4 Statistical (or Ensemble) Interpretation of QM

I point out that it is possible to escape the above-mentioned difficulties by rejection
of the Copenhagen interpretation and association of a pure quantum state (wave
function) not with an individual quantum system, but with an ensemble of systems.

Such an interpretation is called the statistical (or ensemble) interpretation of
QM. It was originally proposed by many authors, including Einstein, Popper, Mar-
genau, de Broglie, Bohm, and Ballentine, but only with the development of quantum
probability could it overcome the traditional criticism which prevented, for over 50
years, the majority of physicists from accepting this apparently natural interpreta-
tion. The main objection to it, to which the above-mentioned authors never gave
a satisfactory answer, was that the statistical interpretation is contradicted by the
experimental data. We recall that at the beginning Schrödinger was quite sympa-
thetic to Einstein’s attempts to proceed in the quantum framework on the basis of
the statistical interpretation.5

Schrödinger wrote that if Einstein were able to derive interference of probabili-
ties for the two-slit experiment on the basis of the statistical model, he (Schrödinger)

4 This whole “quantum approach” is very speculative because it is currently controversial whether
quantum theoretical mechanisms can be experimentally identified in the neural correlates (or con-
stituents) of cognitive processes such as, e.g., decision-making.
5 It is practically forgotten that the famous Schrödinger cat was created to show the absurdness
of the Copenhagen interpretation of QM. If one accepts superposition of states for an individual
microscopic system, then superposition of states for an individual macroscopic system should also
be accepted. We recall that Schrödinger just modified Einstein’s example with a gun and a man by
making it more peaceful (at least at that time) – by using poison and a cat. We remark that nowa-
days people (heavily infected by the Copenhagen interpretation) take Schrödinger cats seriously.
A number of famous experimental groups produce Schrödinger cats (as they believe) in their labs.
Of course, I have no doubt that such experiments as, e.g., done by the group of De Martini from the
University of Rome (“La Sapienza”) are great contributions in the domain of quantum foundations,
but the belief that really Schrödinger cat-type states are produced is rather naive.
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would definitely choose this model. However, neither Einstein nor anybody else was
able to perform such a derivation.

Concerning this objection, my main point is that the experimental data contradict
the use of the Kolmogorov model of probability and not the statistical interpreta-
tion by itself. If one keeps to the statistical interpretation, then one can assume
that the quantum probabilistic description need not be based on irreducible quan-
tum randomness. However, the classical probability model should be generalized
to take into account contextuality of probability, i.e., its dependence on context
(physical, biological, mental, social, financial) of observations (which could even
be self-observations of, e.g., the brain).

The contextual probabilistic calculus can be used for an incomplete description of
statistical data. One could not even exclude that in some cases a Kolmogorov model
can be found beyond the QL contextual probabilistic description. The crucial point
is that the role of the presence of a “hidden Kolmogorovian model” is negligible
if one has no access to data described by the latter (typically unobservable joint
probabilities). In such cases the only reasonable possibility is to use the quantum-
like probabilistic description or different non-Kolmogorovian models.

Thus we propose testing in various applications the approach based on accepting
Einstein’s viewpoint: the mathematical formalism that was developed to serve quan-
tum physics is a special form of incomplete probabilistic description. Of course, for
QM (as a physical theory) Einstein’s viewpoint implies its incompleteness.

1.5 No-Go Theorems

The natural question which is typically asked as the first reaction to my proposal is
the following:

What about the known no-go theorems?

I will not enter here into a debate on the complicated problem of the validity
of no-go theorems.6 In fact, the main problem of the “no-go ideology” is that it
is directed against all possible prequantum models (the so-called hidden variable
models). Supporters of no-go activity formulate new theorems excluding various
classes of models with hidden variables, but one can never be sure that a natural
model that does not contradict any known no-go theorem will finally be found.

Remark 1.1 I do not agree with Bell’s attempt to couple the so-called “quantum
nonlocality” with the problem of completeness of quantum mechanics. Einstein,
Podolsky and Rosen [99] considered “quantum nonlocality” as an absurd alterna-
tive to incompleteness. Unfortunately, nowadays quantum nonlocality has become
extremely popular in quantum information theory. Moreover, this idea is diffusing

6 See, for example, my books [159, 161, 214] and papers [162, 164] as well as my papers with
Igor Volovich [166] and Luigi Accardi [4]; see also stormy debates in the proceedings of Växjö
conferences [165, 167, 5, 6].
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outside quantum physics: it has become fashionable to refer to quantum nonlocal-
ity in cognitive and social sciences and even in parapsychology. In the latter case
quantum nonlocality provides really great new possibilities. Conferences devoted
to Quantum Mind have become a tribune for parapsychological speculations based
on quantum nonlocality. Of course, people working in quantum information theory
and trying to design quantum computers, cryptography and teleportation are not so
happy to hold joint meetings with, e.g., “quantum buddhists” creating a powerful
new religion, but they have no choice! By accepting “quantum nonlocality” they are
in one camp with people providing the QM-interpretation for a nonlocal deity.

As a sign of inconsistency of the no-go activity, we mention the sharp criticism
of the assumptions of known no-go theorems by newcomers – authors proposing
new no-go statements. For instance, Bell criticized [31] quite aggressively assump-
tions of von Neumann’s no-go theorem [301] (and other no-go theorems which
existed at that time). Therefore it is surprising that nowadays the majority of the
quantum community (especially people working in quantum information) reacts
so painfully to critique of the assumptions of Bell’s theorem – for such a critique
see, e.g., Accardi [3], Accardi and Khrennikov [4], Adenier and Khrennikov [7],
Andreev and Man’ko [17], De Baere [78, 79], De Muynck et al. [84, 85], Hess
and Philipp [142, 143], Khrennikov [159, 161, 162, 164, 179], Khrennikov and
Volovich [166, 193], Klyshko [216, 217]. We point out especially the practically
forgotten papers by Klyshko. He was one of the best experimenters in the world in
the domain of quantum optics. It is amazing that he came to the same conclusion
as pure mathematicians, e.g., Accardi, Aerts, Khrennkiov, and recently Hess and
Philipp.

Violation of Bell’s inequality is merely an exhibition of non-Kolmogorovness of
quantum probability, i.e., the impossibility of representing all quantum correlations
as correlations with respect to a single Kolmogorov probability space [219]; there is
no direct relation between this violation and such mysterious things as nonlocality
and death of realism.

1.6 Einstein’s and Bohr’s Views on Realism

I emphasize that Einstein’s realism is a quite naive form of realism. It does not take
into account the dynamics of the process of interaction of a system with the mea-
surement device. The father of the Copenhagen interpretation N. Bohr permanently
pointed out that the whole experimental arrangement (context) should be taken into
account. It is the crucial point not only for physics, but for other domains of science.
For example, in the process of decision making the brain interacts with questions
(problems). The resulting decision is the result of such an interaction.

I share Einstein’s views only partially. I keep to the statistical (ensemble) inter-
pretation of the quantum state and consequent incompleteness of QM, but I agree
with Bohr in considering the values of some quantum observables as responses to
interactions with apparatus rather than objective properties of quantum systems. The
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latter point has been emphasized by Luigi Accardi since the early 1980s in a series
of works on the so-called chameleon effect, see [1–4]. This effect is nothing other
than the dependence of a chameleon’s color (its “property”) on a surface’s color.
The latter is an analog of the state of apparatus. Of course, such a type of system–
apparatus interaction is purely deterministic. To be closer to reality, one should
consider random chameleons. Another similar approach is the adaptive dynamics
developed by Masanori Ohya, see, e.g., [245, 246].

On the basis of such an ideology one can proceed successfully.
This combination of the views of Einstein and Bohr is known as the Växjö inter-

pretation of QM, see [177].
Concerning no-go theorems my proposal could be summarized as follows:

“Do not be afraid to consider the quantum description as an incomplete one.
Look for applications of quantum formalism outside quantum physics!”.

1.7 Quantum and Quantum-like Models

As a comment on the use of the notion quantum-like (QL) behavior, I think that it
would be useful to preserve the term “quantum” for quantum physics while, in other
models which are still based on quantum or, more generally, non-Kolmogorovian,
probabilistic description, we should use the term “quantum-like”. In particular, in
this way my approach can be distinguished from a purely reductionist one. For
example, the quantum brain model is a reductionist model of the brain functioning,
but the QL brain model is a model in which the wave function provides a (incom-
plete) probabilistic representation of information produced by the neurons and not
a model of the actual physical state of them. In the same way a quantum game is
based on randomness produced by quantum physical systems (e.g., photons), but
a QL game can be performed by purely classical physical systems (e.g., people)
exhibiting QL probabilistic behavior.

1.8 Quantum-like Representation Algorithm – QLRA

Quantum-like modeling immediately meets one complex problem: the creation of
QL-representations (in complex and more general Hilbert spaces) of classical (con-
textual) probabilistic data. For example, looking for a QL model of the brain’s func-
tioning we should be able to answer the following question:

How does the brain represent statistical information by the wave function (com-
plex probability amplitude)?

If one considers the brain as a kind of probabilistic machine, then this problem
can be formulated as the inverse Born problem:
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To construct a complex probability amplitude (or in the abstract framework a
normalized vector of Hilbert space) on the basis of probabilistic data. This ampli-
tude should produce probabilities by Born’s rule.

An attempt to solve this problem was made in a series of my works, starting
with [163]. There was created the so-called QL representation algorithm – QLRA.7

It transforms probabilistic data of any origin (which should satisfy some natural
restrictions) into a complex probability amplitude.

1.9 Non-Kolmogorov Probability

We now couple the QL paradigm with another important probabilistic paradigm.
Nonclassical statistical data are not covered completely by the conventional quan-
tum model. The main distinguishing feature of quantum probability is its non-
Kolmogorovinity expressed in the form of contextuality.8

It was emphasized (by Luigi Accardi, Diederik Aerts, Stan Gudder and me9) that
in the same way as in geometry (where, starting with Lobachevsky, Gauss, Riemann,
. . . , various non-Euclidean geometries were developed and widely applied, e.g., in
relativity theory), in probability theory various non-Kolmogorov models may be
developed to serve applications. The QM probabilistic model was one of the first
non-Kolmogorovian models that had important applications. Thus one may expect
development of other types of probabilistic models which would be neither Kol-
mogorovian nor quantum.

7 Improvement of this algorithm, its generalization, and creation of new QL representation algo-
rithms is an important problem in the realization of the QL paradigm.
8 We remind the reader that the main distinguishing feature of the Kolmogorov [219], 1933, model
of probability is the possibility of embedding everything (probabilities and obsevables – called
random variables) in a single space Ω. In particular, all probabilities are reduced from a single
probability measure on this space, say P, and all random variables are realized by functions on
this space. We also point out that, in spite of rather common opinion, the Kolmogorov model is
not so simple mathematically. The measure-theoretic considerations are complicated – much more
complicated than the linear algebra of quantum probability. In fact, the main difficulties in quantum
probability are related to the infinite dimension of the state space, Hilbert space. However, in many
applications, e.g., quantum information, one can proceed with linear algebra in finite-dimensional
spaces.
9 There are some debates on priority. However, I think that such debates are totally meaningless.
These are debates about the first two bright stars in the complete darkness of the traditional quan-
tum kingdom. I was strongly influenced by all of them. Conversations with Stan Gudder and Luigi
Accardi during their visits to Växjö played an important role in the formation of my views on
nonclassical probability. Although I did not succeed in inviting Diederik Aerts to one of the con-
ferences of the Växjö series on foundations of quantum theory and quantum information, e-mail
exchange with him also was very important for me.
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1.10 Contextual Probabilistic Model – Växjö Model

In this book a general scheme of probabilistic description of experimental proba-
bilistic data is presented. We call this model the contextual probabilistic model (the
Växjö model) [185]. The origin of the data does not play any role. It could be statis-
tical data from quantum mechanics or equally from classical statistical mechanics,
biology, sociology, economics, or meteorology. Then it will be shown that the inter-
ference of probabilities (even more generally than in quantum mechanics) can be
found for any kind of data [163, 170–174, 176–178, 186–188]. As was pointed out,
one can easily obtain the linear space representation of probabilities from the inter-
ference of probabilities (by applying QLRA) and then recover Born’s rule (which
will not be a postulate anymore). Thus, in our approach the quantum probabilistic
calculus is just a special linear space representation of given probabilistic data [163].
One of the advantages of the QL representation of probabilistic data is an essential
simplification of operating with this data – linearization of a model always induces
simplification.

Basic to our approach is the notion of context – a complex of conditions under
which the measurement is performed. Contexts of different kinds can be considered:
physical, biological or even political. Our approach to the subject of probability is
contextual. It is meaningless to consider a probability not specifying the context of
consideration.

Kolmogorov was well aware of the contextuality of his probability space [219].
He emphasized that any experiment should be described by its own (Kolmogorov)
probability space. Unfortunately, this ideological recognition of contextuality of
probabilities did not imply any form of the mathematical formalization in his work
(or in the work of later users of the Kolmogorov probability model). One of the
sources of quite misleading (for applications) development of the mathematical
theory of probability was the presence of conditioning in the standard probability
model. Kolmogorov defined conditional probabilities by using Bayes formula. It
became a custom to identify context-dependence with such Bayesian condition-
ing. I think that it restricted essentially the range of context-dependent phenomena.
Already in QM, one should go beyond Bayesian conditioning. It is amazing that
QM was created at the same time as the Kolmogorovian model. But mathematicians
were able to proceed for at least 50 years without understanding that this model
suffers from a very special definition of conditioning.

I should also mention the model of Hungarian mathematician Renyi [267], which
is nowadays practically forgotten. He tried to extend Bayes-Kolmogorov condition-
ing. But the closest to my approach were the probabilistic studies by Mackey [235],
who tried to reconstruct quantum probability on the basis of contextual (conditional)
probabilities. Unfortunately, his attempt was not completely successful. Finally, he
postulated the Hilbert space representation of probabilities.

As was pointed out, generally the QL paradigm is not reduced to application
of conventional quantum probability (based on the complex Hilbert space repre-
sentation) outside quantum physics. Other (non-Kolmogorovian) models might be
applied as well. One such model was presented – it is the model with so-called
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hyperbolic interference of probabilities [163]. It is based on representation of prob-
abilities by amplitudes taking values in the algebra of so-called hyperbolic numbers
(a two-dimensional Clifford algebra).10

1.11 Experimental Verification

Finally, one should analyze several different families of empirical data in order to
realize concretely the outlined programme. It is clear that without experimental jus-
tification the QL paradigm is simply a philosophical-mathematical principle. It can
give rise to a huge variety of interesting mathematical models (as was done, e.g., in
string theory [123]), but finally these models should be verified by comparison with
experimental statistical data.

The first steps of the experimental verification have already been done, see Conte
et al. [66, 67]. It was experimentally confirmed that the brain behaves as a QL
system in the process of decision making (in tests with ambiguous figures): the
interference of probabilities related to incompatible questions was found. More-
over, it was natural to suppose that some well-known experiments that have already
been done in cognitive science or psychology might produce nonclassical statistical
data.11 Recently Busemeyer et al. [48, 49] pointed out that statistical data collected
in famous experiments in cognitive psychology performed by Shafir and Tversky
[275, 295] do not agree with the standard Markov chain model based on classical
probability theory. He proposed using the quantum model. Stimulated by discus-
sions with Jerome Busemeyer (professor of cognitive psychology), I applied my
QL approach to Shafir-Tversky statistical data. It was represented (via QLRA) by
complex (and in some case more general hyperbolic!) probability amplitudes. The
interference of probabilities was found [208, 213, 206], see also the joint work
with Emmanuel Haven [207]. I remark that, opposite to the original conjecture
of Busemeyer, Shafir-Tversky statistical data do not match the conventional quan-
tum model. The corresponding matrices of transition probabilities are not doubly
stochastic, but they should be by QM (in the case of observers with nondegenerate
spectra).

10 This example motivates extension of the QL paradigm by attempting to develop and apply mod-
els in which probability amplitudes take values in various commutative and even noncommutative
algebras. The corresponding generalizations of Born’s rule should be presented, analogues of the
QL representation algorithms should be created. These are interesting and complex problems!
11 Luigi Accardi pointed out such a possibility many years ago (during my visit to Centro V.
Volterra, University of Rome - 2, in 1994). We suspected that nonclassical data might be found
in economics, finances, and psychology. The same point was expressed in long discussions with
Stan Gudder and Karl Gustafson during my visit to the Universities of Denver and Boulder, in
2001. However, it was really impossible to find such data without competence in the corresponding
domains of science. Therefore I was happy when Elio Conte proposed performing experiments to
test my QL model [180] of cognition.
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1.12 Violation of Savage’s Sure Thing Principle

We recall that experimental studies by Shafir and Tversky [275, 295] were about
behavior of people in games such as the well-known Prisoner’s Dilemma, which
illustrate Savage’s Sure Thing Principle (STP) [271]. Violation of this principle is
known as the disjunction effect, see Shafir and Tversky [275, 295] and also Rapoport
[266], Hofstadter [145, 146] and Croson [71]. We recall that STP is one of the basic
principles of modern theoretical economics. In fact, it is a form of the postulate
on rational behavior of agents acting at the market. Thus experimental violation of
STP (disjunction effect) is a sign of irrational behavior of agents.

The QL model, see Chapter 7, explains this irrationality. The QL extension of
probabilistic description of natural and social phenomena shows that the notion of
rationality is itself dependent on a probabilistic model. The conventional rationality
of economic agents is in fact the classical probabilistic rationality. If the brain pro-
cesses information by using some QL representation of probabilistic data, then there
are no reasons to expect exhibitions of conventional rationality. Of course, such
cognitive systems behave irrationally from the conventional (say Kolmogorovian)
viewpoint. However, they are completely rational in the corresponding QL sense.

1.13 Quantum-like Description of the Financial Market

In the conventional financial models, rationality of agents of the financial market
is formalized through the efficient market hypothesis, which was formulated in the
1960s, see Samuelson [269, 270] and Fama [103] for details:

A market is said to be efficient in the determination of the most rational price if
all the available information is instantly processed when it reaches the market and
it is immediately reflected in a new value of prices of the assets traded.

From the viewpoint of the QL paradigm the most rational price in the sense of
conventional theory of the financial market is the most rational in the framework of
the classical probabilistic model (the Kolmogorovian measure-theoretic model).12

If agents of the financial market behave nonclassically (and that is my conjecture),
then they use another type of rationality, the QL rationality. QL-rational behavior
may look irrational in the conventional framework. (We remark that the experiments
of Shafir and Tversky [275, 295] were done to show the irrationality of agents.) We
recall once again that QL models describe the following situation. For each context
C, only a special part of (statistical) information on this context can be measured
and hence be available, for example, to traders. And we emphasize once again that
such a viewpoint on the conventional quantum model contradicts the Copenhagen
interpretation. However, the latter does not disturb us much. Debates on hidden

12 “All the available information” has Boolean structure. The corresponding probability is
described by the Kolmogorovian model.
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variables in QM may continue for the next few hundred years. Even if physical quan-
tum randomness is irreducible, one cannot exclude the possibility that quantum and
more general QL formalisms can describe reducible (but contextual) randomness in
other domains of science, for example, psychology or economics.

In Chapter 10 of this book we shall present a QL model of the functioning of
agents of the financial market which is based on the mathematical formalism of
Bohmian mechanics.13 The “financial pilot wave” describes expectations of agents.
Nonlocality of this model is purely classical: the common field of expectations is
created through classical communication channels (TV, internet, newspapers, pri-
vate communications). The presence of such a field provides a possibility to “rule”
the financial market – in the same way as one can rule quantum particles by manip-
ulating the pilot wave.

We remark that the original Bohmian model of QM is totally deterministic. Each
quantum particle has well-defined position and momentum. Motion is described by
a kind of Newton’s equation (say Bohm-Newton equation), which contains not only
the classical force generated by the physical potential V (for example, the Coulomb
potential describing interaction of two charged particles, e.g., electron and proton),
but also an additional force – the so-called quantum force. The latter is produced by
the pilot wave, which is described by Schrödinger’s equation (so mathematically it is
just the wave function). It can be changed by modification of the physical potential
V (which can depend on time) in Schrödinger’s equation. The main point is that
a slight modification of V can produce a modification of the pilot wave such that
the corresponding quantum force will be essentially different (from that expected
for non-modified V ). Applying this formalism to the financial market, we see that
by slight modification of the financial potential V one can totally change financial
forces. Of course, it should be the right modification.14

The original Bohmian model can be essentially improved by adding a classical
stochastic term to the Bohm-Newton equation describing motion of the quantum
particle. This is the Vigier-Bohm model [40]. Such an improvement is especially
useful for description of financial processes. The financial version of the origi-
nal Bohmian model produces price trajectories that are solutions of the ordinary
differential equation (Bohm-Newton equation) that is “controlled” by the field of
expectations, the pilot wave. The latter makes the model essentially more realistic
than classical financial models. Nevertheless, the presence of deterministic price
trajectories might be considered a weakness of the Bohmian financial model.15

13 This model was invented by the author and Olga Choustova [53, 62, 175] and it was generalized
by Emmanuel Haven [136] who made it closer to applications.
14 Development of the present financial crisis might be considered as indirect confirmation of our
model. The effects of special manipulations in the mass media can be considered as modifications
of V . Such modifications need not involve many financial resources, so they are really small from
the financial point of view.
15 The problem of whether the financial market is deterministic (a huge deterministic dynamical
system, maybe chaotic) or random is still the subject of debate, see the introduction to Chapter 10
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The Vigier-Bohm model for the financial market was developed by Olga Choustova
[60, 62] and Emmanuel Haven [136].

In fact, the financial Bohmian model is an attempt to go beyond the QL descrip-
tion. One can also proceed with the standard mathematical formalism of QM:
Segal and Segal [274], Haven [132–135], Piotrowski et al. [252–258], Danilov
and Lambert-Mogiliansky [73, 74], Khrennikov [176]. The model of the financial
market based on the use of the Hilbert space representation of financial quantities
developed by Baaquie [22] can also be mentioned. The quantum ideology does not
play a large role in Baaquie’s model. It is closer to classical models of signal anal-
ysis based on the Hilbert space representation.

Finally, we point to the book by Soros [282], which was definitely one of the first
works on applications of methods of QM to the financial market. It is amazing that
Soros, who was so far from quantum science, claimed that the financial market is
a huge quantum system and not at all a collection of classical random systems (as
claimed by conventional financial science). It is well known that Soros senses the
financial market very well. His heuristic justification of its quantumness is a strong
argument in favor of the QL approach. In particular, his book was the starting point
for Olga Choustova’s and my research.

1.14 Quantum and Quantum-like Games

Game theory plays an important role in various models of economics and evolution
theory (including genetic evolution). Quantum games naturally arose in the process
of development of quantum information, see, e.g., Ekert [100]. In principle, quantum
games might be used for modeling of evolution and even in economics. However,
one meets the same problems as in attempts to proceed with quantum reductionism
in cognitive modeling. Maybe in genetics one could still appeal to conventional
quantum games (induced by quantum systems), but in higher level cognitive pro-
cesses or economics attempts to use quantum games (based on the irreducible ran-
domness of quantum physical systems) are not sufficiently justified. In complete
accordance with the QL paradigm, the QL probabilistic behavior can be exhibited
in games that are not coupled directly to quantum physical systems – in particular,
by (macroscopic) cognitive systems. Thus biological organisms and populations are
able to play QL games in the process of evolution. Moreover, the evolution of social
and economic systems might be based on QL games.16 In particular, agents of the

for details. Although nowadays various models based on (classical) randomness dominate in theo-
retical finances, a large amount in real finances is done by technical analysis.
16 By the QL paradigm the main reason for such games is operating with incomplete informa-
tion. It can be profitable for a population not to spend too many resources on obtaining complete
information about context, but to proceed by operating with incomplete information. Of course,
such “nonclassical” operating should be consistent. Some rules should be established. By the QL
paradigm various QL rules can be elaborated in this way.
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market can play QL games, compare the experimental studies of Shafir and Tversky
[275, 295]; see also publications by Piotrowski et al. [252–258].

Even in genetics the quantum-likeness (and not directly quantumness) may be
crucial for evolution. Genes and genomes are macroscopic structures. In principle,
their functioning can be based on incomplete information processing. In such a case
the right model of genetic evolution would be based on a QL game between genes
as well as between genomes. However, the latter conjecture is rather speculative.
The corresponding experimental studies of quantum-likeness of genetic processes
should be performed. On the other hand, simple QL games between people exhibit-
ing interference effects (and even violating Bell’s inequality) were proposed by Grib
et al. [124, 125] and me [203]; see also the recent paper by Aerts et al. [9].

1.15 Terminology: Context, Contextual Probability,
Contextuality

A few remarks regarding the terminology in this book are called for. The notion
of the context can be related to the notion of the preparation procedure, which is
widely used in quantum measurement theory [234, 46, 148]. Of course, preparation
procedures – devices preparing systems for subsequent measurements – give a wide
class of contexts. However, the context is a more general concept. For example,
we can develop models operating with social, political or historical contexts, e.g.,
socialism context, victorian context. To give another example, one can consider the
context “Leo Tolstoy” in literature. The latter context can be represented by various
kinds of physical and mental systems – by books, readers, movies.

Contextual probability can be coupled to a conditional probability. However,
once again the direct identification can be rather misleading, since the conventional
meaning of the conditional probability P(B|A) is the probability that event B occurs
under the condition that event A has occurred [219]. Thus, conventional condition-
ing is event-conditioning. Our conditioning is a context-conditioning: P(b = β|C)
is the probability that observable b takes the value β in the process of measurement
under context C. In principle, we are not against the term “conditional probability”
if it is used in the contextual sense.

The main terminological problem is related to the notion of the contextuality. The
use of the term “contextual” is characterized by a huge diversity of meanings, see
Bell [31], Svozil [289] or Beltrametti and Cassinelli [32] for the notion of contex-
tuality in quantum physics as well as Light and Butterworth [228] and Bernasconi
and Gustafson [35] for the notion of contextuality in cognitive science and artifical
intelligence (AI). In quantum physics the contextuality is typically reduced to a
rather specific contextuality – “Bell contextuality.” Bell invented this notion in the
framework of the EPR-Bohm experiment [31, 32]. We recall that such quantum
contextuality (“Bell’s contextuality”) is defined as follows:

The result of the measurement of an observable a depends on another measure-
ment on observable b, although these two observables commute with each other.
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It should be emphasized that nonlocality in the framework of the EPR-Bohm
experiment is a special case of quantum contextuality. Our contextuality is essen-
tially more general than Bell’s. In a very special case one can determine the context
for the measurement of a by fixing an observable b that is compatible with a. How-
ever, in the general case there is nothing about a mutual dependence or compatibility
of observables. The context is simply a complex of conditions (e.g. physical or bio-
logical). Our description of the EPR-Bohm experiment is contextual, but there is no
direct coupling with nonlocality. Our approach to the contextuality is closer to the
one used in cognitive science and AI, see [228, 35].

1.16 Formula of Total Probability

The basis of linear representations of probabilities (performed by QLRA) is a gen-
eralization of the well-known formula of total probability (FTP) [280]. We recall
that in the case of two dichotomous variables a = α1, α2 and b = β1, β2 this basic
formula has the form

P(b = β) = P(a = α1) P(b = β|a = α1) + P(a = α2) P(b = β|a = α2),

(1.1)

where b = β1 or b = β2.

This formula is widely used in statistics and especially in statistical decision
making. One wants to predict probabilities for values of the b-variable on the
basis of probabilities for values of the a-variable and conditional probabilities to
get the value b = β under the assumption that a = α. In decision making one
makes decisions depending on magnitudes of probabilities P(b = β) given by FTP
(1.1). Probabilities on the right hand side of FTP could have various interpreta-
tions. They could be objective probabilities calculated on the basis of the previous
statistical experience. They also could be subjective probabilities assigned to, e.g.,
values of the a-variable. Further considerations do not depend on interpretation of
probabilities.

1.17 Formula of Total Probability with Interference Term

Starting with the contextual statistical model (Växjö model) we will obtain a gener-
alization of the conventional FTP (1.1) that is characterized by the appearance of an
additional term, an interference term

P(b = β) = P(a = α1) P(b = β|a = α1) + P(a = α2) P(b = β|a = α2)

+ δ(b = β|a). (1.2)
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Depending on the magnitude of this term (relative to the magnitudes of probabil-
ities on the right-hand side of (1.1)), we obtain either the conventional trigonometric
interference (“cos-interference”), which is well known in classical wave mechanics
as well as in quantum mechanics, or a hyperbolic interference (“cosh-interference”),
which was not predicted by conventional physical theories, neither by classical wave
theory nor by quantum mechanics. Such a new type of interference arises naturally
in the Växjö model.

The possibility of violating the FTP is one of the important consequences of
non-Kolmogorovness of probabilistic data. One of the main consequences of QL
modeling is that cognitive and social systems can process probabilistic data vio-
lating FTP. Such a violation can be negligible for some contexts (which is why
conventional FTP has been applied so successfully in many domains of science),
but in general it cannot be completely neglected. By neglecting the interference
term one comes to paradoxical conclusions, as in the case of data from the experi-
ments of Shafir and Tversky [275, 295]. It is natural to suppose that cognitive and
social systems should take into account (to survive in the process of evolution) the
mentioned possibility of violation of FTP. Thus they should develop the ability to
use a more general probabilistic model than the classical model. We speculate that
they use special representations of the contextual statistical model. They may be
able to apply QLRA and to represent contextual probabilities in complex or more
general linear spaces.

1.18 Quantum-like Representation of Contexts

We recall once again that all probabilities in (1.2) are contextual. They depend on a
complex of conditions, context C, for measurements of observables a and b. Start-
ing with FTP with the interference term (1.1) and applying QLRA we obtain two
basic types of representations of contexts, C → ψC , in linear spaces:

a) representation of some special collection of contexts Ctr (“trigonometric con-
texts”)17 in complex Hilbert space, see Chap. 2;

b) representation of some special collection of contexts Chyp (“hyperbolic con-
texts”)18 in the so-called hyperbolic Hilbert space.

The complex and hyperbolic representations can be combined in a single rep-
resentation over a little bit more complicated algebraic structure – the algebra of
complex hyperbolic numbers.

We emphasize that in general the collections of trigonometric and hyperbolic
contexts, Ctr and Chyp, are just proper subsets of the complete collection of contexts
C of a Växjö model M (contextual statistical model). Depending on model M there

17 They produce the ordinary cos-interference.
18 They produce hyperbolic cosh-interference.



1.18 Quantum-like Representation of Contexts 17

can exist contexts that cannot be represented algebraically: neither in complex nor
in hyperbolic Hilbert spaces.

We can speculate that some cognitive and social systems might restrict informa-
tion processing by taking into account only trigonometric contexts. Such systems
would process probabilistic information through its representation in the complex
Hilbert space.



Chapter 2
Classical (Kolmogorovian) and Quantum (Born)
Probability

This chapter contains short introductions to classical and quantum probabilistic
models. To simplify presentation, in both cases we consider only discrete variables.

2.1 Kolmogorovian Probabilistic Model

We start with two notations. Let A be a set. The characteristic function IA of the set
A is defined as IA(x) = 1, x ∈ A, and IA(x) = 0, x �∈ A. Let A = {a1, . . . , an} be
a finite set. We shall denote the number of elements n of A by the symbol |A|.

Sets of real and complex numbers are denoted by symbols R and C, respectively.

2.1.1 Probability Space

The modern axiomatics of probability theory was invented by Andrei Nikolaevich
Kolmogorov (one of greatest mathematicians of the 20th century) in 1933, [219],
see also [121, 279, 161] and it was a natural finalization of a few hundred years long
development of the set-theoretic model for probability. A crucial point is representa-
tion of events by subsets of some basic set Ω. The collection of subsets representing
events should be sufficiently rich to be able to perform set-theoretic operations such
as intersection, union and difference of sets.1 Then one assigns weights (real num-
bers) to these subsets:

A �→ P(A) (2.1)

for an event A. They are chosen nonnegative and normalized by 1: P(Ω) = 1. The
weight of a set A which is the disjoint union of sets A1 and A2 is equal to the sum
of weights of these subsets. The latter property is called finite additivity. The map
given by (2.1) with mentioned properties is measure-theoretic probability. If the

1 However, it should not be unreasonably large. If too extended a system of subsets is selected,
then it may represent “events” that cannot be interpreted in a reasonable way.
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basic set Ω is finite2 one can proceed with this simple definition. However, if the
Ω is countable, i.e., it is infinite and its points can be enumerated or “continuous” –
e.g., a segment of the real line R – then finite additivity is not sufficient for creating
a fruitful mathematical model. It is extended to so-called σ-additivity (countable
additivity). A rich mathematical model is created. However, by proceeding with
σ-additivity one should not forget Kolmogorov’s remark [219] that σ-additivity is
a purely mathematical and totally nonphysical notion. It is impossible to perform
a real experiment an infinite number of times. In principle, the model based on
σ-additivity might produce probabilistic artifacts that have no real interpretation.3

We now start rigorous presentation of probability theory. But, in principle, one
can read practically the whole book by considering the model based on a finite set
Ω, a collection of events represented by all its subsets and finite-additive probability
given by assigning weights to points of Ω : ω → P(ω). For example, the uniform
probability is given by equal weights. For Ω = {ω1, . . . , ωN }, P(ω j ) = 1/N . Here,
for A ⊂ Ω , P(A) = |A|/N .

Let Ω be a set. We recall that a σ-algebra is a system of subsets of Ω that is
closed with respect to operations of countable intersection, union and difference of
sets and containing Ω and the empty set ∅.4

The simplest example of a σ-algebra is the system consisting of just two sets: Ω

and ∅. However, it is too small to do anything interesting. Another example is given
by the family of all subsets of Ω. As was mentioned, such a σ-algebra is useful
if the set Ω is finite or even countable. However, if Ω is “continuous”, then con-
sideration of all possible subsets as representing events induces visible probabilistic
pathologies, see [161] for details. So, the σ-algebra consisting of all subsets (of, e.g.,
a segment [a, b] of the real line) is too large. One chooses a smaller σ-algebra, the
so-called Borel σ-algebra. For example, for Ω = R, it is generated by all half-open
intervals: [α, β), α < β. However, in this book we will practically never operate
with continuous Ω .

Let Ω be a set and let F be a σ-algebra of its subsets. A probability measure P is
a map from F to the segment [0, 1], which is normalized P(Ω) = 1 and σ-additive

P(A1 ∪ . . . ∪ An ∪ . . .) = P(A1) + . . . + P(An) + . . . ,

for disjoint sets belonging to F .
By the Kolmogorov axiomatics [219], see also [280], the probability space is a

triple

P = (Ω,F , P).

Points ω of Ω are said to be elementary events, elements of F are events, P is
probability.

2 Since Ω can contain billions of points, this model is useful in a huge class of applications.
3 Unfortunately, this point made by Kolmogorov has been totally forgotten.
4 In some books on probability theory the terminology σ-field is used, instead of σ-algebra.
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Discrete random variables5 on the Kolmogorov space P are by definition func-
tions a : Ω → Xa , where Xa = {α1, . . . , αn, . . .} is a countable set (the range of
values), such that sets

Ca
α = {ω ∈ Ω : a(ω) = α}, α ∈ Xa, (2.2)

belong to F .

It is typically assumed that the range of values Xa is a subset of the real line.
We will proceed under this assumption practically everywhere, but sometimes, e.g.,
in cognitive and psychological modeling, it will be more convenient to consider
Boolean labels, e.g. α = yes, no.

We shall use the symbol RV D(P) to denote the space of discrete random vari-
ables for the probability space P. The probability distribution of a ∈ RV D(P) is
defined by P(a = α) = P(Ca

α), α ∈ Xa, where the set Ca
α is given by (2.2). It is

convenient to proceed with a shorter symbol

pa(α) ≡ P(ω ∈ Ω : a(ω) = α).

We remark that:

pa(α1) + . . . + pa(αn) + . . . = 1, pa(αn) ≥ 0. (2.3)

The average (mathematical expectation) of a random variable a is defined as

ā ≡ Ea = α1 pa(α1) + . . . + αn pa(αn) + . . . . (2.4)

For a family of random variables a1, . . . , am taking values α1
j , . . . , α

m
j , j = 1, 2, . . . ,

respectively, their joint probability distribution is defined as

pa1...am (α1
j1 , . . . , α

m
jm ) = P(ω ∈ Ω : a1(ω) = α1

j1 , . . . , am(ω) = αm
jm ). (2.5)

We remark that the joint probability is symmetric with respect to permutations; e.g.,
for two random variables a and b, we have

pab(α, β) = P(ω ∈ Ω : a(ω) = α, b(ω) = β) = pba(β, α). (2.6)

It is an important feature of the Kolmogorov model.
For two random variables a and b covariance is defined as

cov(a, b) = E(a − ā)(b − b̄) =
∑

αβ

(α − ā)(β − b̄) pab(α, β). (2.7)

5 In Chaps. 1–9 we consider only discrete random variables. In Chaps. 10 and 11 random variables
having continuous ranges of values will be used.
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It is easy to see that

cov(a, b) = Eab − āb̄. (2.8)

We remark that covariance is symmetric

cov(a, b) = cov(b, a). (2.9)

2.1.2 Conditional Probability

Kolmogorov’s probability model is based on a probability space equipped with the
operation of conditioning. In this model conditional probability is defined by the
well-known Bayes’ formula

P(B|C) = P(B ∩ C)/P(C), P(C) > 0. (2.10)

By Kolmogorov’s interpretation it is the probability that an event B occurs under
the condition that an event C occurred. We remark that this formula is a definition,
it cannot be derived. The use of this definition of conditional probability is one of
fundamental constraints induced by the Kolmogorov model.

We remark that PC (B) ≡ P(B|C) is again a probability measure on F . For a set
C ∈ F , P(C) > 0, and a (discrete) random variable a, the conditional probability
distribution is defined as

pa
C (α) ≡ P(a = α|C), α ∈ Xa .

We naturally have

pa
C (α1) + . . . + pa

C (αn) + . . . = 1, pa
C (αn) ≥ 0. (2.11)

The conditional expectation of a random variable a is defined by

E(a|C) = α1 pa
C (α1) + . . . + αn pa

C (αn) + . . . . (2.12)

For two random variables a and b, consider conditional probabilities

pβ|α ≡ P(b = β|a = α), pα|β ≡ P(a = α|b = β).

Following tradition, we will call these probabilities transition probabilities, although
this terminology might be misleading for our further considerations, see Remark 2.1.

These conditional probabilities can also be written in the form

pβ|α = P(b = β|Ca
α), pα|β = P(a = α|Cb

β), (2.13)
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where, e.g., Ca
α is defined by (2.2). It is, of course, assumed that in the first case

pa(α) > 0 and in the second case pb(β) > 0.

Remark 2.1 The terminology “transition probabilities” may be rather misleading for
this book. Typically pβ|α is considered as the probability of transition from the state
α of some system to another state β of the same system. That is why the symbol pαβ

is typically used, instead of our pβ|α. To come to the standard notation, one should
change pβ|α → pαβ and vice versa. However, we will not consider states of systems.
For us, pβ|α is probability of obtaining the value b = β of the observable b under
the condition that the result a = α was observed in the previous measurement of the
observable a. Nevertheless, we will also use the standard terminology – transition
probabilities.

It is convenient to use the following definition. A random variable a is said to be
nondegenerate if

pa(α) > 0 (2.14)

for any α ∈ Xa . In future considerations we shall use the matrices of conditional
probabilities for successive measurements – transition probabilities

Pb|a = (pβ|α), Pa|b = (pα|β). (2.15)

The first matrix is well defined if a is nondegenerate and the second if b is nonde-
generate. We remark that these matrices are always left stochastic. A left stochastic
matrix is a square matrix whose columns consist of nonnegative real numbers whose
sum is 1. For example, for Pb|a, we have that

∑

β

pβ|α =
∑

β

P(b = β|a = α) =
∑

β

PCa
α
(b = β) = 1 (2.16)

for any fixed a = α. It is a consequence of the fact that, for any set C of strictly
positive probability, PC is also a probability measure. In (2.16) we select C = Ca

α.

Coming back to Remark 2.1, we notice that in standard notation a matrix of
“transition probabilities” is not left, but right stochastic, i.e., all rows sum to 1. We
point out the following equality connecting the joint probability distribution of two
random variables a and b with their transition probabilities:

pab(α, β) = pa(α)pβ|α = pb(β)pα|β = pba(β, α). (2.17)

Conditional probabilities are basic in considerations on independent random vari-
ables, see Sect. 12.1.1.

In our further considerations one special class of matrices of transition probabil-
ities will play a fundamental role. These are so-called doubly stochastic matrices.
We recall that in a doubly stochastic matrix all entries are nonnegative and all rows
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and all columns sum to 1. Of course, in general Pb|a is only left stochastic, not dou-
bly stochastic. The following proposition characterizes random variables inducing
doubly stochastic matrices.

Proposition 2.1 Let a and b be nondegenerate random variables. Then the follow-
ing conditions are equivalent:

DS-DS Both matrices Pa|b and Pb|a are doubly stochastic.
UD Random variables are uniformly distributed: pa(α) = pb(β) = 1/2.

SC Random variables are “symmetrically conditioned” in the sense

pβ|α = pα|β. (2.18)

In the Kolmogorovian model one can guarantee double stochasticity for both b|a-
and a|b-conditioning only for uniformly distributed random variables. This is not
the case in non-Kolmogorovian models, e.g., for the quantum probabilistic model,
see Sect. 2.4. Here equivalence of conditions DS-DS and SC plays a crucial role. In
fact, the latter is coupled to the symmetry of the scalar product.

Consider now a pair of dichotomous random variables a = α1, α2 and b =
β1, β2. The matrix of transition probabilities Pb|a has the form

Pb|a =
(

pβ1|α1 pβ1|α2

pβ2|α1 pβ2|α2

)
(2.19)

It is doubly stochastic iff p1|1 = p2|2 and p1|2 = p2|1, i.e.,

Pb|a =
(

p 1 − p
1 − p p

)
(2.20)

In particular, it is automatically symmetric. In this case SC is equivalent to the con-
dition Pb|a = Pa|b.

2.1.3 Formula of Total Probability

In our further considerations an important role will be played by the formula of
total probability (FTP). It is a theorem of the Kolmogorov model. Let us consider a
countable family of disjoint sets Ak belonging to F such that their union is equal to
Ω and P(Ak) > 0, k = 1, . . .. Such a family is called a partition of the space Ω.

Theorem 2.1 Let {Ak} be a partition. Then, for every set B ∈ F , the following
formula of total probability holds:

P(B) = P(A1)P(B|A1) + . . . + P(Ak)P(B|Ak) + . . . . (2.21)
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Proof We have

P(B) = P(B ∩ ∪∞
k=1 Ak) =

∞∑

k=1

P(B ∩ Ak) =
∞∑

k=1

P(Ak)
P(B ∩ Ak)

P(Ak)
.

Especially interesting for us is the case such that a partition is induced by a
discrete random variable a taking values {αk}. Here

Ak = Ca
αk

= {ω ∈ Ω : a(ω) = αk}. (2.22)

Let b be another random variable. It takes values {β j }. For any β ∈ Xb, we have

P(b = β) = P(a = α1)P(b = β|a = α1) + . . . + P(a = αk)P(b = β|a = αk) + . . .

(2.23)
or in compact notation

pb(β) = pa(α1)pβ|α1 + . . . + pa(αk)pβ|αk + . . . . (2.24)

2.2 Probabilistic Incompatibility: Bell–Boole Inequalities

If the reader has not yet been excited by Bell’s inequality and such mysterious con-
sequences of its violation as quantum nonlocality and death of realism in QM, then
I strongly recommend him or her to omit this section as well as Sect. 2.7. Bell’s
inequality will not play a fundamental role in this book (nevertheless, it will appear
in Sect. 9.6).

Bell’s inequality is really the central point of modern QM. Therefore the reader
may be surprised to find it not in Sect. 2.3, devoted to QM, but in the section devoted
to classical probability theory (Kolmogorov’s model). However, I think that it is the
right place for the appearance of Bell’s inequality, i.e., before saying anything about
QM. My personal opinion is that this inequality is the standard subject of classical
probability theory. Moreover, we will see that Bell-type inequalities appeared in
probability theory long before not only Bell’s invention, but even the discovery of
QM. My main message to the reader is that attempts (which are very popular in
modern QM, especially in the quantum information community) to associate Bell-
type inequalities with quantum nonlocality or death of realism are not sufficiently
justified. In classical probability theory such inequalities were used for one hundred
years (!) without any reference to the mentioned fundamental problems or to QM in
general.
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2.2.1 Views of Boole, Kolmogorov, and Vorob’ev

In his book [219] Andrei Nikolaevich Kolmogorov emphasized that each experi-
mental arrangement (context) generates its own probability space. For him it was
totally clear that it is very naive to expect that all experimental contexts can be
described by a single (perhaps huge) probability space. In particular, the following
problem arises. Suppose that a family of observables, say O = {a1, a2, a3, . . .}, is
given. However, it is impossible to measure them all simultaneously. Thus the joint
probability distribution is not given. Nevertheless, it is possible to measure some
groups of these observables and joint probability distributions for such groups are
given.

Is it possible to construct a single probability space serving for the whole
family O?

Thus we are interested in the possibility of embedding the family of observables
O into the space of random variables on a single probability space. If the answer
is yes, then such observables exhibit probabilistic compatibility (PC), and in the
opposite case, probabilistic incompatibility (PI), see [204] for details.

It seems that G. Boole (the inventor of Boolean logic and Boolean algebra) was
the first to study this problem. He formulated a necessary condition for PC of a fam-
ily of three dichotomous observables, a1, a2, a3 = ±1, such that they can be mea-
sured pairwise, but not all simultaneously. This condition coincides with the famous
Bell’s inequality [31], which plays a fundamental role in modern QM!6. Later the
most general problem of PC (i.e., for an arbitrary family of observables) was solved
by Soviet mathematician Vorob’ev [302], who applied these results to problems of
optimal control and game theory. Unfortunately, Vorob’ev’s results were also practi-
cally forgotten.7 Of course, practically complete disregard of the PC problem in the
probabilistic community played an extremely negative role in the development of
science. In particular, if Bell or at least someone from the quantum community had
been aware of the results of Boole or Vorob’ev or at least of Kolmogorov’s message,
“context induces a probability space”, discovery of Bell-type inequalities need not
have induced coupling to such mysterious (and nowadays extremely popular) things
such as quantum nonlocality or death of realism in QM.

A pragmatic guy [161] could be completely satisfied with recognition that prob-
abilistic data collected in a few incompatible experiments (and this is the case in

6 Boole’s results were totally forgotten. Itamar Pitowsky found these results and compared them
with Bell’s inequality, see [259, 260] and also the preface in [167].
7 Walter Philipp discovered Vorob’ev’s article [302] and together with Karl Hess advertised it a
lot [143], in particular during the Växjö series of conferences on quantum foundations, see, e.g.,
[165, 167, 5, 6]. The main problem of the classical probabilistic community was concentration on
mathematical problems related to a single Kolmogorov space, especially various limit theorems.
In such a situation even the idea that something could not be embedded in such a space was not
especially welcome. Vorob’ev’s works were not highly estimated by the Soviet probabilistic com-
munity (which was one of the strongest in the world) and, as a result, not by the international
community either.
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application of Bell’s inequality in QM) cannot be described by a single probability
space, or in other words, observables are not of the PC-type. Compare the views
of Accardi, Aerts, Fine, Fuchs, Garola and Solombrino, Hess and Philipp, Khren-
nikov, Kupczynski, Larsson, Pitowsky, Rastal, Sozzo, Adenier (see [204] for the
corresponding bibliography and this author’s book [161] for mathematical details).
Then one can try to find sources of PI that are different from quantum nonlocality
or death of realism, see [204].

We now discuss the problem in mathematical notation. In principle, it is a repe-
tition of previous considerations, but with mathematical symbols.

Consider a system of three observables ai , i = 1, 2, 3. Suppose for simplic-
ity that they take discrete values and moreover they are dichotomous: ai = ±1.

Suppose that these observables as well as their pairs can be measured and hence
joint probabilities for pairs are well defined: pai a j (αi , α j ) ≥ 0 and

∑
αi ,α j =±1 pai a j

(αi , α j ) = 1.

Question Is it possible to construct the joint probability distribution, pa1a2a3 (α1, α2,

α3), for any triple of pairwise measurable observables?

This is the simplest case of the general problem – to find conditions for existence
of probability distribution with given marginal probabilities. First of all, it is easy
to give numerous examples of nonexistence.

Example 2.1 (see [302]) Suppose that

P(a1 = +1, a2 = +1) = P(a1 = −1, a2 = −1) = 1/2;

P(a1 = +1, a3 = +1) = P(a1 = −1, a3 = −1) = 1/2;

P(a2 = +1, a3 = −1) = P(a2 = −1, a3 = +1) = 1/2.

Hence, P(a1 = +1, a2 = −1) = P(a1 = −1, a2 = +1) = 0; P(a1 = +1,

a3 = −1) = P(a1 = −1, a3 = +1) = 0, P(a2 = +1, a3 = +1) = P(a2 = −1,

a3 = −1) = 0. It is impossible to construct a probability measure which would
produce these marginal distributions. We can show this directly [302]. Suppose that
one can find a family of real constants P(ε1, ε2, ε3), ε j = ±1, such that

P(ε1, ε2,+1) + P(ε1, ε2,−1) = P(a1 = ε1, a2 = ε2), . . . ,

P(+1, ε2, ε3) + P(−1, ε2, ε3) = P(a2 = ε2, a3 = ε3).

Then it is easy to see that some of these numbers should be negative. In a more
fashionable way one can apply Bell’s inequality, e.g., for correlations (Sect. 2.2.2)
and see that it is violated.

We emphasize that for mathematicians consideration of Bell-type inequalities did
not induce revolutionary reconsideration of the laws of nature. The joint probability
distribution does not exist simply because those observables could not be measured
simultaneously.
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2.2.2 Bell’s and Wigner’s Inequalities

Let P = (Ω,F , P) be a Kolmogorov probability space. We recall that covariance
of two random variables is given by (2.7).

Theorem 2.2 (Bell inequality for covariances) Let a1, a2, a3 = ±1 be random vari-
ables on P. Then Bell’s inequality

|〈a1, a2〉 − 〈a2, a3〉| ≤ 1 − 〈a3, a1〉 (2.25)

holds.

The proof of this inequality (in such a rigorous mathematical formulation) can
be found, e.g., in [161]; see also the original work of Bell [31] for a proof in the
physical framework.

We now turn to Example 2.1. If a1, a2, a3 can be realized on the same probability
space, then (2.25) would hold. On the other hand, we have

〈a1, a2〉 = 1; 〈a1, a3〉 = 1; 〈a2, a3〉 = −1.

Bell’s inequality should imply: 1 − (−1) = 2 ≤ 1 − 1 = 0. We remark that in
accordance with Boole we consider Bell’s inequality just as a necessary condition
for probabilistic compatibility.

We also recall the following simple mathematical result, see Wigner [304]:

Theorem 2.3 (Wigner inequality) Let a1, a2, a3 = ±1 be arbitrary random vari-
ables on a Kolmogorov space P. Then the following inequality holds:

P(a1 = +1, a2 = +1) + P(a2 = −1, a3 = +1) (2.26)

≥ P(a1 = +1, a3 = +1).

Its proof is very simple, see Sect. 12.2. The crucial point is the use of a single
probability measure P.

2.2.3 Bell-type Inequalities for Conditional Probabilities

The original Boole–Bell inequality served to solve the problem of PC. In its simplest
version this problem is based on the assumption that pairwise probability distribu-
tions are well defined – observables can be measured pairwise. However, even such
an assumption is not always satisfied. Sometimes even for pairs of observables joint
measurements are impossible, but it is possible to perform conditional measure-
ments. For example, first the observable a1 is measured and the result a1 = α1

is obtained. Then under this condition the observable a2 is measured. Conditional
probability P(a2 = α2|a1 = α1) can be found. The simplest test of PC – the pos-
sibility of realizing three observables a1, a2, a3 on a single Kolmogorov probability
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space – is based on conditional probabilities. As the author of this book noticed,
by using Bayes’ formula (2.10), i.e., assuming the validity of the Kolmogorovian
definition of conditional probability, Wigner’s inequality can be easily rewritten as
an inequality for conditional probabilities:

Theorem 2.4 (Wigner–Khrennikov inequality) Let a1, a2, a3 = ±1 be arbitrary
random variables on a Kolmogorov space P. Then the following inequality holds:

P(a1 = +1)P(a2 = +1|a1 = +1) + P(a2 = −1)P(a3 = +1|a2 = −1) (2.27)

≥ P(a3 = +1)P(a1 = +1|a3 = +1).

Thus if conditional probabilities for a triple of dichotomous observables violate
this inequality, they exhibit PI; see Sect. 9.6 for application to game theory.

2.3 Quantum Probabilistic Model

The mathematical formalism of quantum mechanics is the theory of self-adjoint
operators on complex Hilbert spaces. The symbols H and 〈·, ·〉 denote separable
complex Hilbert space and the scalar product on it; ‖ψ‖ = √〈ψ,ψ〉 the norm of
ψ ∈ H;

S = {ψ ∈ H : ‖ψ‖ = 1}

is the unit sphere in H. We also consider the set of equivalence classes in the unit
sphere S with respect to the equivalence relation: ψ1 ∼ ψ2 iff ψ1 = cψ2, where
c ∈ C and |c| = 1. Denote this set by the symbol S̃.

Although real quantum physics is described by infinite-dimensional Hilbert
space (of square integrable complex valued functions), quantum information is
totally fine with finite dimensional spaces:

Hn = Cn = C × . . . × C. (2.28)

Since our considerations relate merely to informational features of the quantum
model, we can proceed (practically everywhere) in the same way as in quantum
information. The space Hn is endowed with the scalar product

〈ψ, φ〉 =
n∑

j=1

ψ jφ j , ψ = (ψ1, . . . , ψn), φ = (φ1, . . . , φn) ∈ Hn. (2.29)

Self-adjoint operators can be represented by Hermitian matrices, â = (ai j ), such
that akm = amk, where z = x + iy → z = x − iy is the operation of complex
conjugation. The spectrum, Spec(̂a), is nothing else than the set of eigenvalues:
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âψ = αψ. We remark that all eigenvalues are real. Eigenvectors corresponding
to the same eigenvalue α form a linear subspace. Its dimension gives the degree
of degeneration of α. The orthogonal projector on this subspace is denoted by the
symbol Pa

α . It acts similarly to the orthogonal projector to a plane or line in R3. Of
course, the use of complex spaces makes direct geometric illustration impossible
even for the space H2 – it is the four-dimensional real space.

2.3.1 Postulates

The probabilistic model of quantum theory can be formulated as the following series
of postulates:

Postulate 1 (The mathematical description of quantum states.) Quantum (pure)
states (wave functions) are represented by normalized vectors ψ (i.e., ‖ψ‖2 =
〈ψ,ψ〉 = 1) of a complex Hilbert space H. Every normalized vector ψ ∈ H may
represent a quantum state. If a vector ψ corresponding to a state is multiplied by
any complex number c, |c| = 1, the resulting vector will correspond to the same
state.8

The physical meaning of “a quantum state” is not defined by this postulate. It
must be provided by a separate postulate; see Postulates 6, 6a.

Postulate 2 (The mathematical description of physical observables.) A physical
observable a is represented by a self-adjoint operator â in complex Hilbert space
H. Different observables are represented by different operators.

Postulate 3 (Spectral) For a physical observable a which is represented by the self-
adjoint operator â we can predict (together with some probabilities) values λ ∈
Spec(̂a) (the spectrum of â).

We restrict our considerations to the simplest self-adjoint operators, which are
analogous to discrete random variables. We recall that a self-adjoint operator â has
a purely discrete spectrum if it can be represented as

â = α1 Pa
α1

+ . . . + αm Pa
αm

+ . . . , αm ∈ R, (2.30)

where Pa
αm

are orthogonal projection operators related to the orthonormal eigenvec-
tors {ea

km}k of â corresponding to the eigenvalues αm by

Pa
αm

ψ =
∑

k

〈ψ, ea
km〉ea

km, ψ ∈ H. (2.31)

Here k labels the eigenvectors ea
km which belong to the same eigenvalue αm of â.

Thus Spec(̂a) = {α1, . . . , αm, . . .}.

8 Thus states are given by elements of S̃.
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Postulate 4 (Born’s rule – in formalization of Dirac and von Neumann) Let a phys-
ical observable a be represented by a self-adjoint operator â with purely discrete
spectrum. The probability Pψ (a = αm) of obtaining the eigenvalue αm of â for
measurement of a in a state ψ is given by

Pψ (a = αm) = ‖Pa
mψ‖2. (2.32)

If the operator â has nondegenerate (purely discrete) spectrum, then each αm is
associated with a one-dimensional subspace. The latter can be fixed by selecting any
normalized vector, say ea

m . In this case orthogonal projectors act simply as

Pa
αm

ψ = 〈ψ, ea
m〉ea

m . (2.33)

The formula (2.32) takes a very simple form

Pψ (a = αm) = |〈ψ, ea
m〉|2. (2.34)

This is Born’s rule in the Hilbert space formalism.
To obtain original Born’s rule, one should choose H as the L2-space of square

integrable functions, ψ : R �→ C. (We consider a one-dimensional particle.) The
position observable x is represented by the multiplication operator x̂

x̂(ψ)(x) = xψ(x). (2.35)

This operator has a continuous spectrum. It coincides with the whole real line. So,
this operator is unbounded. Its eigenvectors do not belong to the L2-space. They are
given by Dirac’s δ-functions, i.e., these are generalized eigenvalues, see Dirac [90]

x̂(eα)(x) = αeα(x), α ∈ R, (2.36)

where eα(x) = δ(x − α). One can reasonably define paring9

〈ψ, eα〉 = ψ(α). (2.37)

Then the rule (2.34) gives

Pψ (x = α) = |ψ(α)|2. (2.38)

9 In fact, the situation is little bit more complicated from the mathematical viewpoint. In the
rigorous mathematical framework, elements of the L2-space are given by equivalent classes of
functions. Two functions belong to the same class if the measure of points where they are distinct
is equal to zero. To proceed rigorously, one should select a subspace in the L2-space and consider
Dirac’s delta function and its shifts eα(x) = δ(x − α) as continuous linear functionals on this
subspace. This can be done in the framework of distribution theory. Here paring (2.37) is nothing
else than action of the functional eα to the test function ψ. However, physicists typically do not
pay attention to such mathematical problems.



32 2 Classical (Kolmogorovian) and Quantum (Born) Probability

Remark 2.2 (Origin of Born’s rule.) This rule was invented in the following way.
Originally Schrödinger considered the ψ-function as a classical field – similar to
the electromagnetic field. The quantity E(α) = |ψ(α)|2 is the energy density of
this field. Born invented the rule (2.38) by criticizing Schrödinger’s interpretation.
Instead of the energy density, he considered this quantity as the probability density.
The latter induces automatically the normalization condition

1 =
∫ +∞

−∞
|ψ(α)|2 = 〈ψ,ψ〉

which was absent in Schrödinger’s model. After a few years of struggle, Schrödinger
gave up and kept to Born’s interpretation.

In the same way one can consider momentum measurement. Schrödinger defined
the momentum operator as

p̂(ψ)(x) = −i
d

dx
ψ(x). (2.39)

(We eliminate the Planck constant from consideration by choosing the appropriate
system of units.) It is easy to see that its spectrum is also continuous and it coincides
with R. Its generalized eigenfunctions can be easily found from the equation

−i
d

dx
ep
β (x) = βep

β (x), β ∈ R.

Thus ep
β (x) = eiβx . Thus by (2.34)

Pψ (p = β) = |〈ψ, eb
β〉|2. (2.40)

By taking into account that

〈ψ, eb
β〉 =

∫ +∞

−∞
ψ(x)e−iβx dx = ψ̃(β)

is the Fourier transform of ψ, we write Born’s rule for the momentum measurement
as

Pψ (p = β) = |ψ̃(β)|2, (2.41)

cf. (2.38).

Remark 2.3 (Classical description of quantum measurements.) For any state ψ, each
quantum observable â can be represented as a classical random variable. In the
discrete case we take Ω = {α1, . . . , αm, . . .} ≡ Spec(̂a), the σ-algebra consists
of all subsets of Ω, and the probability measure is defined as P(A) = ∑

αm∈A Pψ
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(a = αm), where Pψ (a = αm) is given by Born’s rule. Thus each concrete quantum
measurement can be described classically. Problems arise only when one tries to
describe classically data collected for a few incompatible observables. We remark
that such attempts contradict Kolmogorov’s ideology [219]. Kolmogorov empha-
sized that each probability space is determined by the corresponding complex of
experimental conditions (context). The same message came from Bohr, who pointed
out that the whole experimental arrangement should be taken into account and
whose principle of complementarity supports Kolmogorovian ideology. For exam-
ple, the impossibility of embedding the collection of probabilities for the posi-
tion and momentum measurements (for all possible quantum states) into a single
probability space is often considered as a new astonishing probabilistic situation.
However, Kolmogorov’s ideology implies that attempts at such an embedding have
no justification – since the position and momentum measurements for a quantum
system cannot be performed in a single experimental setting.

By using Born’s rule (2.32) and the classical probabilistic definition of average
(2.4), it is easy to see that the average value of an observable a in a state ψ belonging
to the domain of definition of the operator â is given by

〈a〉ψ = 〈̂a ψ,ψ〉. (2.42)

Postulate 5 (Time evolution of wave function.) Let Ĥ be the Hamiltonian of a quan-
tum system, i.e., the self-adjoint operator corresponding to the energy observable.
The time evolution of the wave function ψ ∈ H is described by the Schrödinger
equation

i
d

dt
ψ(t) = Ĥψ(t) (2.43)

with the initial condition ψ(0) = ψ.

2.3.2 Quantization

We remark that the operators of position and momentum, x̂ and p̂, see (2.35)
and (2.39), do not commute and they satisfy Heisenberg’s canonical commutation
relation

[̂x, p̂] = i. (2.44)

Consider any real-valued function on the classical phase space, i.e., a function of
classical coordinate and momentum, f (x, p). The quantization procedure is the map

f �→ f̂ = f (̂x, p̂). (2.45)
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In general, it is a tricky mathematical problem to define a function of two noncom-
muting operators. It is typically done by using the calculus of pseudo-differential
operators.10

However, in the simplest case the operator of energy Ĥ can be easily defined.
Consider a classical particle with the mass m moving in the potential V (x). Its
Hamiltonian function (representing classical energy of this particle) is given by

H (x, p) = p2

2m
+ V (x). (2.46)

Quantization gives us the operator

Ĥ = H (̂x, p̂) = p̂2

2m
+ V (x). (2.47)

2.3.3 Interpretations of Wave Function

Now we are going to discuss one of the most important and complicated notions of
quantum mechanics: the notion of a quantum state. There are two main points of
view, which are formulated in the following postulates.

Postulate 6 (The ensemble interpretation.) A wave function provides a description of
certain statistical properties of an ensemble of similarly prepared quantum systems.

This interpretation is upheld, for example by Einstein, Popper, Blokhintsev, Mar-
genau, Ballentine, Klyshko, and in recent years by, e.g., de Muynck, De Baere,
Holevo, Santos, Khrennikov, Nieuwenhuizen, Adenier and many others.

Postulate 6a (The Copenhagen interpretation.) A wave function provides a complete
description of an individual quantum system.

This interpretation was supported by a great variety of scientists, from Schrödinger,
in his original attempt to identify the electron with a wave function solution of his
equation, to the proponents of the several versions of the Copenhagen interpretation
(for example, Heisenberg, Bohr, Pauli, Dirac, von Neumann, Landau, Fock and, in
recent years, e.g., Greenberger, Mermin, Lahti, Peres, Summhammer11). Nowadays

10 See [160] for the most general presentation of quantization procedure on the mathematical level
of rigorousness, including both bosons and fermions as well as supersymmetric systems, quantum
field theory, strings and superstrings and corresponding string field theories; see [158, 159] for
operator quantization over non-Archimedean (in particular, p-adic) number fields.
11 There is an interesting story about the correspondence between Bohr and Fock on the indi-
vidual interpretation. This story was told to me by a former student of Fock, who pointed out
that one of the strongest supporters of this interpretation was Vladimir A. Fock, and that even
though Bohr himself had doubts about its consistency, Fock demonstrated to Bohr inconsistency
in the Einsteinian ensemble interpretation. Thus interpretation, which is commonly known as the
Copenhagen interpretation, might just as well be called the “Leningrad interpretation.”
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the individual interpretation is extremely popular, especially in quantum information
and computing.

Instead of Einstein’s terminology ”ensemble interpretation”, Ballentine [25, 26]
used the terminology “statistical interpretation.” However, Ballentine’s terminol-
ogy is rather misleading, because the term “statistical interpretation” was also used
by von Neumann for individual randomness! For him “statistical interpretation” had
a meaning that is totally different from Ballentine’s “ensemble-statistical interpreta-
tion.” John von Neumann wanted to emphasize the difference between deterministic
(Newtonian) classical mechanics, in which the state of a system is determined by
values of two observables (position and momentum), and quantum mechanics, in
which the state is determined not by values of observables, but by probabilities. We
shall follow Albert Einstein and use the terminology “ensemble interpretation.”

Finally, we point out recent papers concerning the foundations and, in particular,
various interpretations of quantum mechanics: [3–6, 13, 21, 106, 116, 130, 4, 17,
21, 27, 45, 47, 66, 77, 79, 83–85, 106, 116, 117, 130, 119, 127, 142–144, 148, 161–
214, 215, 225, 226, 261– 264, 272, 284–292].

2.4 Quantum Conditional Probability

As in the classical Kolmogorov probabilistic model, Born’s postulate should be
completed by a definition of conditional probability. We present the contempo-
rary definition that is conventional in quantum logic [32] and quantum information
theory.

Definition 2.1 Let physical observables a and b be represented by self-adjoint oper-
ators with purely discrete (possibly degenerate) spectra:

â =
∑

m

αm Pa
αm

, b̂ =
∑

m

βm Pb
βm

(2.48)

Let ψ be a pure state and let Pa
αk

ψ �= 0. Then the probability of obtaining the value
b = βm under the condition that the value a = αk was observed in the preceding
measurement of the observable a on the state ψ is given by

Pψ (b = βm |a = αk) ≡ ‖Pb
βm

Pa
αk

ψ‖2

‖Pa
αk

ψ‖2
(2.49)

Let the operator â have a nondegenerate spectrum, i.e., for any eigenvalue α the
corresponding eigenspace (i.e., generated by eigenvectors with âψ = αψ) is one
dimensional. We can write

Pψ (b = βm |a = αk) = ‖Pb
βm

ea
k ‖2 (2.50)
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(here âea
k = αkea

k ). Thus the conditional probability in this case does not depend
on the original state ψ. We can say that the memory of the original state has
been destroyed. If also the operator b̂ has a nondegenerate spectrum then we have
Pψ (b = βm |a = αk) = |〈eb

m, ea
k 〉|2 and Pψ (a = αk |b = βm) = |〈ea

k , eb
m〉|2. By using

symmetry of the scalar product we obtain:

Proposition 2.2 Let both operators â and b̂ have purely discrete nondegenerate
spectra and let Pa

k ψ �= 0 and Pb
mψ �= 0. Then conditional probability is symmetric

and it does not depend on the original state ψ :

Pψ (b = βm |a = αk) = Pψ (a = αk |b = βm) = |〈eb
m, ea

k 〉|2.

We remark that classical (Kolmogorov–Bayes) conditional probability is not sym-
metric, except in very special situations; the same is valid for my general contextual
probabilistic model, see Chapt. 3. Thus QM is described by a very specific proba-
bilistic model.

Consider two nondegenerate observables. Set pβ|α = P(b = β|a = α). The
matrix of transition probabilities Pb|a, see (2.15) for the definition (but do not for-
get that transition probabilities are no longer defined by Bayes’ rule!), is not only
stochastic but doubly stochastic. It is easy to see that

∑

α

pβ|α =
∑

α

|〈eb
β, ea

α〉|2 = 〈eb
β, eb

β〉 = 1.

Double stochasticity is also a very specific property of quantum probability, cf. the
Kolmogorovian model and my model Chap. 3. In fact, condition DS-DS holds: both
matrices of transition probabilities Pa|b and Pb|a are doubly stochastic. Moreover,
any pair of quantum observables (with nondegenerate spectra) satisfies to condition
SC; they are “symmetrically conditioned”, see (2.18).

In the quantum framework independent observables are considered in
Sect. 12.1.2.

2.5 Interference of Probabilities in Quantum Mechanics

We will show that quantum probabilistic calculus violates the conventional FTP, see
Sect. 2.1.3.

Let H2 = C × C be the two-dimensional complex Hilbert space and let ψ ∈
H2 be a quantum state. Let us consider two dichotomous observables b = β1, β2

and a = α1, α2 represented by self-adjoint operators b̂ and â, respectively (one
may consider simply Hermitian matrices). Let eb = {eb

β} and ea = {ea
α} be two

orthonormal bases consisting of eigenvectors of the operators. The state ψ can be
represented in the two ways

ψ = c1ea
1 + c2ea

2 , cα = 〈ψ, ea
α〉; (2.51)
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ψ = d1eb
1 + d2eb

2, dβ = 〈ψ, eb
β〉. (2.52)

By Postulate 4 we have

P(a = α) ≡ Pψ (a = α) = |cα|2; (2.53)

P(b = β) ≡ Pψ (b = β) = |dβ |2. (2.54)

The possibility of expanding one basis with respect to another basis induces connec-
tion between the probabilities P(a = α) and P(b = β). Let us expand the vectors ea

α

with respect to the basis eb

ea
1 = u11eb

1 + u12eb
2; (2.55)

ea
2 = u21eb

1 + u22eb
2, (2.56)

where uαβ = 〈ea
α, eb

β〉. Thus d1 = c1u11 + c2u21, d2 = c1u12 + c1u22. We obtain the
quantum rule for transformation of probabilities

P(b = β) = |c1u1β + c2u2β |2. (2.57)

On the other hand, by the definition of quantum conditional probability, see (2.49),
we obtain

P(b = β|a = α) ≡ Pψ (b = β|a = α) = |〈ea
α, eb

β〉|2. (2.58)

By combining (2.53), (2.54) and (2.57), (2.58) we obtain the quantum formula of
total probability – the formula of interference of probabilities:

P(b = β) =
∑

α

P(a = α)P(b = β|A = α)

+2 cos θ
√

P(a = α1)P(b = β|a = α1)P(a = α2)P(b = β|a = α2)

(2.59)

In general cos θ �= 0. Thus the quantum FTP does not coincide with the classical
FTP (2.23) which is based on Bayes’ formula

P(b = β) =
∑

α

P(a = α)P(b = β|a = α). (2.60)
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2.6 Contextual Point of View of Interference

The difference between the quantum rule (2.59) and the classical rule (2.60) is not
surprising. As was pointed out in Remark 2.2, there are no reasons to expect that
data obtained for observables a and b which could not be jointly measured can be
described by a single Kolmogorov probability space. However, the classical FTP,
see Sect. 2.1.3, was derived under the assumption that both observables can be
represented by random variables belong to the same Kolmogorov space.12

The crucial point is that one cannot use the same symbol P to denote all proba-
bilities in (2.59). In one formula, (2.59), one combines probabilistic data obtained
in four different experiments (experimental contexts):

a) measurement of the observable a under the complex of physical conditions (con-
text) C which is represented by the initial state ψ ;

b) measurement of the observable b under the same context C ;

After performing the a-measurement one can create through selection procedures
Cα1 and Cα2 (selections of systems with respect to the values a = α1 and a = α2)
two new ensembles of systems Sα1 and Sα2 . In quantum mechanics (with the ensem-
ble interpretation) these ensembles are represented by the eigenvectors ea

1 , ea
2 of the

operator â. Therefore we can perform the b-measurement for two new contexts:

a1) measurement of the observable b under the complex of physical conditions
(context) Cα1 which is represented by the state ea

1 ;
a2) measurement of the observable b under the complex of physical conditions

(context) Cα2 which is represented by the state ea
2 .

The a)-experiment gives probabilities Pψ (a = α); the b)-experiment – Pψ (b =
β); the a1)-experiment – Pea

1
(b = β); the a2)-experiment – Pea

2
(b = β).

What could be the reason to assume that we can use a single probability measure
P in all these experiments?

2.7 Bell’s Inequality in Quantum Physics

As was pointed out in Sect. 2.2, inequalities of Boole–Bell type provide neces-
sary conditions for probabilistic compatibility (PC) of families of observables and,
hence, their violations provide sufficient conditions for probabilistic incompatibil-
ity (PI). As was first pointed out by Bell, see [31] for details, quantum formalism

12 We remark that Feynman [105] considered violation of FTP in the two-slit experiment as vio-
lation of the laws of classical probability. For him it was an exhibition of special, even mystical,
properties of quantum systems. A similar comment by d’Espagnat on violation of FTP can be
found in [87].
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predicts the existence of such quantum states13 that inequality (2.25) is violated
for a special choice of a family of pairwise measurable observables.14 Thus these
observables are of the PI-type.

In any domain of science, one should look for special roots of PI. In particular,
in physics Bell found two possible roots: quantum nonlocality and death of real-
ism. Moreover, he was sure that one can still proceed in QM by using the realistic
description in its strongest (Einsteinian) form: assigning values of observables to the
state of a quantum system before measurement.15 In principle, one cannot exclude
that he found the right possible roots.

My approach is essentially more general. By considering the problem from the
PI viewpoint, we can look for other roots of PI, which need not coincide with those
proposed by Bell. One can still keep to realism and locality. PI can arise from, e.g.,
taking into account parameters of measurement devices (so considering values of
observables as depending on internal states not only of systems, but also of mea-
surement devices16), or from unfair sampling; details can be found in [204, 7].

Moreover, Bell-type inequalities for probability distributions (or covariances)
of pairwise measurements are not the simplest tests of PC. As was mentioned in
Sect. 2.2.3, PC can be tested by conditional measurements of three observables
by using the Wigner–Khrennikov inequality (2.27). It is easy to see [214] that this
inequality is violated for specially selected projections of spin or polarization. Con-
ditional measurements, e.g., spin projections to one direction and then to another,
can be performed on a single particle. Unlike Bell’s original scheme, we need not
consider pairs of entangled particles. Hence, PI of spin or polarization projections
take place even for a single particle. It is completely clear that the source of PI is the
impossibility of measuring these observables simultaneously. It would be surprising
if PI for spin or polarization projections derived by using Bell’s original inequality
for entangled pairs has another explanation, e.g., nonlocality. By operating with
the Wigner–Khrennikov inequality for conditional probabilities one can see how
artificial Bell’s appeal to nonlocality was.

13 These are so called EPR-type states, see Einstein, Podolsky, Rosen [99] for details.
14 For example, spin or polarization projections to specially chosen directions.
15 Here by state we understood “prequantum state”, hidden variable, λ. Thus, first of all, J. Bell was
sure that QM does not provide the complete description of phenomena. As well as Einstein, he was
sure that one can finally find a better description of physical reality than given by QM. The reason
of Bell’s belief in naive Einsteinian realism were precise correlations (anti-correlations) exhibited
by measurements for EPR-type states. Thus Bell was sure that violation of inequality (2.25) implies
nonlocality. For him, the best model of prequantum reality was given by Bohmian mechanics.
Later, as is often happen in science, majority of people combine nonlocality with rejection of
realism. The monster of mysterious “quantum nonlocality” was born. It is clear that Bell would not
be happy with such an interpretation of his studies. However, it is clear as well that Einstein would
not be happy with nonlocal realism. His reaction to creation of Bohmian mechanics was negative.
16 Such sort of realism differs from naive Einsteinian realism and it is closer to Bohr’s views; cf.
also with Accardi’s chameleon effect [1, 4] and Ohya’s adaptive dynamics [245, 246].



40 2 Classical (Kolmogorovian) and Quantum (Born) Probability

2.8 Växjö Interpretation of Quantum Mechanics

The Växjö interpretation [177] is a variant of the ensemble interpretation, Postu-
late 6:

A wave function provides a description of certain statistical properties of an
ensemble of similarly prepared quantum systems.

However, “properties” are not Einsteinian properties, which can be assigned to
a system before measurement. Properties should be understood in Bohr’s sense: as
results of interaction of systems with measurement devices. However, unlike Bohr, I
do not claim that QM is complete and it is in principle impossible to provide a finer
description of reality, e.g., by taking into account internal states of measurement
devices, see [214, 184, 191].



Chapter 3
Contextual Probabilistic Model – Växjö Model

A contextual probabilistic model – providing a general description of probabilistic
data, classical as well as quantum – will be presented. Moreover, the classical Kol-
mogorovian model [219] and the quantum Dirac–von Neumann model [90, 301], see
Sect. 2.3, are only very special cases of our contextual model. The latter describes
probabilistic data that cannot be described by either classical or conventional quan-
tum models.

3.1 Contextual Description of Observations

A fundamental notion of my model is context. It is a complex of (e.g. physical or
biological) conditions. Construction of the model starts with selection of a family of
contexts C. The next step is selection of a family of observables O. Any observable
a ∈ O can be measured under context C ∈ C.

Denote observables by Latin letters, a, b, ..., and their values by Greek letters,
α, β, ... For an observable a ∈ O, denote the set of its possible values (“spec-
trum”) by the symbol Xa . To simplify considerations, we will consider only dis-
crete observables. We remark that our general model does not contain systems, e.g.,
physical ones.

3.1.1 Contextual Probability Space and Model

Definition 3.1 A contextual probability space is a triple Pcont = (C,O, π ), where
elements of C and O are interpreted as contexts and observables, and elements of π

are the corresponding probability distributions1.

Here π = {
pa

C

}
, C ∈ C, a ∈ O. For any α ∈ Xa,

pa
C (α) ≡ P(a = α|C) (3.1)

1 In our case these are simply discrete probability measures.

A. Khrennikov, Ubiquitous Quantum Structure,
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is the probability of obtaining the value a = α for observation of a under context C.

We have

pa
C (α1) + ... + pa

C (αn) + ... = 1, pa
C (αn) ≥ 0. (3.2)

We prefer to call probabilities (3.1) contextual probabilities.2 For any context
C ∈ C, we consider the set of probabilities

W (O, C) = {P(a = α|C) : a ∈ O, α ∈ Xa}. (3.3)

Definition 3.2 Contextual expectation E[a|C] of an observable a ∈ O with respect
to context C ∈ C is given by

āC = E[a|C] = α1 pa
C (α1) + ... + αn pa

C (αn) + .... (3.4)

I now compare (3.2) and (3.4) with the Kolmogorovian model, namely, with (2.3)
and (2.4). In my model the probability distribution of an observable a depends on
a context (of observations) C. In Kolmogorov’s approach equations (2.3) and (2.4)
are based on the “absolute probability distribution” P. However, the Kolmogorovian
model also provides a possibility (although rather restricted) of inventing contextual
dependence of probabilities, namely, through contextual interpretation of condi-
tional probability. Formally, (3.2) and (3.4) coincide with (2.11), (2.12). The main
difference is that in the Kolmogorovian model it is assumed that all probabilities can
be produced from a single probability P with the aid of Bayes’ formula.

Although the definition of a contextual probability space does not involve sys-
tems, in the majority of applications one can assume that measurements are per-
formed on systems, physical, biological, social. In such a case, it is useful to assume
that each context C can be represented by an ensemble of systems SC . These are
systems that have interacted with C. They can be considered as representing features
of C. Typically, a system represents only a “part of the features” of C. To represent
context C, a sufficiently large (in principle, infinitely large) ensemble SC should be
used, see [214] for formalization.

To create a fruitful model, we postulate the existence of contexts inducing tran-
sition probabilities P(b = β|a = α) for pairs of observables.

Definition 3.3 (Växjö model) A contextual probability model is a contextual prob-
ability space Pcont = (C,O, π ) such that C contains a special subfamily of contexts
{Ca

α}a∈O,α∈Xa which are interpreted as [a = α]-selection contexts. Context Ca
α cor-

responds to the selection with respect to the result a = α. Moreover, it is assumed
that Ca

α satisfies the condition

2 It is possible to call them conditional probabilities as in Kolmogorov’s model. Unlike the latter,
contextual probability (3.1) is not the probability that an event, say B, occurs under the condition
that another event, say C, occurred. Contextual probability is the probability of obtaining the result
a = α under context C.
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P(a = α|Ca
α) = 1. (3.5)

It is assumed that, for each observable a ∈ O and its value α, the selection
context Ca

α is uniquely determined – in the class of contexts C of the model. To
simplify notation, we shall often use the symbol Cα instead of Ca

α (when such a
notation is not ambiguous). Both Kolmogorov’s classical model and the Dirac–von
Neumann quantum model can be represented as contextual models, see Sect. 12.4.

3.1.2 Selection Contexts; Analogy with Projection Postulate

The most natural interpretation of selection contexts can be given for the special
class of models in which observables are considered as observables on systems.
In this case the context Ca

α consists of the a-measurement procedure and the post-
measurement selection of systems for which the result a = α was obtained. In this
book we will be interested merely in cognitive applications. In this framework a is
a question which is posed to a group of people. The Ca

α is selection of people who
answered a = α (e.g., α = +1, i.e. yes, α = −1, i.e. no) and creation of a new
group. Then people from this new group can be asked another question, say b.

We now comment on condition (3.5). It implies that in a measurement of a under
the complex of conditions Ca

α the value a = α is obtained with probability 1. It
can be considered as a contextual probabilistic version of the von Neumann–Lüders
projection postulate, see Sect. 12.3.3 In cognitive models, systems take a sort of
responsibility for their answers to questions belonging to the family O. Thus observ-
ables considered in the Växjö model are generalizations of quantum observables.

3.1.3 Transition Probabilities, Reference Observables

Let a, b ∈ O and let α ∈ Xa, β ∈ Xb. We consider the [a = α]-selection con-
text Cα. The corresponding contextual probabilities

pβ|α ≡ P(b = β|a = α) = P(b = β|Cα)

will play an important role in further considerations. They are called transition prob-
abilities. As was pointed out, we have simply borrowed the standard terminology. In
fact, it would be more natural to call them b|a-contextual probabilities. We will use
matrices of transition probabilities, for pairs of observables a, b ∈ O, Pb|a = (pβ|α).

3 By obtaining the fixed result a = α we can be sure that in the process of measurement the system
was transformed to such a state that if the a-measurement is performed once again (inside of a
sufficiently short interval of time), then the same result a = α will be obtained once again with
probability 1, cf. von Neumann [301].
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Let C ∈ C. We complete the probabilistic data W (O, C), see (3.3), by the data
contained in the matrices of transition probabilities Pb|a for all pairs a, b ∈ O. We
obtain a collection of contextual probabilities that will be denoted by the symbol

D(O, C). (3.6)

We shall often take a subset O′ of O and consider the collection of probabilistic data
about contexts given by observables belonging to O′. This collection is denoted by
the symbol D(O′, C). Typically O′ will consists of two observables, say a and b.

Our aim is to create a quantum-like representation of contexts by using just a pair
of observables (which are analogues of position and momentum observables). Such
observables are called reference observables.

By collecting the probabilistic data D(O, C) for all contexts C ∈ C we obtain
the collection of data D(O, C) = ∪C∈C D(O, C), which completely characterizes
the contextual probabilistic model. Thus any model can be symbolically written as
M = (C,O,D(O, C)).

The main considerations will be based on pairs of dichotomous reference observ-
ables: O ′ = {a, b} and a = α1, α2, b = β1, β2. Here

D(a, b, C) = {pa
C (α), pb

C (β), pα|β, pβ|α}.

In further considerations we will be interested in pairs of reference observables
such that both matrices of transition probabilities Pb|a and Pa|b (or b|a and a|b
contextual probabilities) are doubly stochastic. As in the Kolmogorovian case, we
call two observables symmetrically conditioned if condition SC (2.18) holds. This
condition implies double stochasticity. However, unlike the Kolmogorovian case,
double stochasticity even of both matrices of transition probabilities Pb|a and Pa|b

does not imply SC. We recall that in QM the condition SC holds for any pair of
observables with nondegenerate spectra. It is a consequence of the symmetry of the
scalar product.

3.1.4 Covariance

In the Kolmogorovian model, it is possible to define covariance of two random
variables, see (2.7). This definition is based on the joint probability distribution
pab(α, β) = P(a = α, b = β). The possibility of joint measurement is assumed. In
my contextual probability model such a possibility is not assumed. Thus the joint
probability distribution of two observables a, b ∈ O need not be defined. Neverthe-
less, we can proceed by mimicking formula (2.17), a consequence of Bayes’ rule in
the Kolmogorovian model. We proceed formally by using it as a definition of “joint
probability”. We set

pab
C (α, β) = pa

C (α)pβ|α. (3.7)
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We have
∑

α,β pab
C (α, β) = 1. Thus it is really probability (discrete probability

measure on the collection of all subsets of Ω = Xa × Xb).
Let a, b ∈ O be two observables. It is not assumed that they can be jointly

measured. Consider any function h : Xa × Xb → R. We define the average

E[h(a, b)|C] ≡ E pab
C

h(a, b) =
∑

α,β

h(α, β)pab
C (α, β). (3.8)

We now define covariance, cf. (2.7). By definition

covC (a, b) = E[(a − āC )(b − b̄C )|C], (3.9)

cf. (2.8), Sect. 2.1.1. In general,

covC (b|a) �= E pab
C

(ab) − āC b̄C . (3.10)

In the same way we define another “joint probability distribution”, which is based
on a|b-conditioning pba

C (β, α) = pb
C (β)pα|β and the corresponding covariance

covC (a|b). Unlike the Kolmogorovian model, cf. (2.17) and (2.9), these joint prob-
ability distributions and covariances are not equal.

Suppose now that, for some context C,

pba
C (β, α) = pab

C (α, β). (3.11)

Then it is possible to construct a Kolmogorov probability space PC and realize the
obseravbles a and b by random variables: Ω = Xa × Xb, F is the collection of its
subsets, and probability P(A) = ∑

(α,β)∈A pab
C (α, β). If (3.11) is violated, then this

pair of observables is served by two different Kolmogorov spaces (for this context).

Remark 3.1 This impossibility for some pairs of observables, say a and b, to embed
in a single Kolmogorov probability space probabilities with respect to some context,
say C, and probabilities with respect to selection contexts is the main reason for
invention of the Växjö model.

Independent observables (in the contextual framework) are considered in
Section 12.1.3.

3.1.5 Interpretations of Contextual Probabilities

Mathematical probability, i.e., the collection of probability distributions π of a con-
textual probability space Pcont = (C,O, π ), see Definition 3.1, can be interpreted
in various ways, see [161]. One of the most useful for applications is the frequency
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interpretation of probability. In von Mises’ model4 it is expressed in the form of the
principle of statistical stabilization of relative frequencies, νa

C (α; N ) = na
C (α)/N ,

for results of observations. Here na
C (α) is the number of observations under context

C with the fixed result a = α. It is postulated that these frequencies stabilize when
the number of observations N → ∞. Their limiting value is called the probability
of realization of the value α of the observable a:

P(a = α|C) = lim
N→∞

νa
C (α; N ). (3.12)

In the majority of considerations in this book contextual probabilities are inter-
preted as frequency probabilities. It is the most general interpretation of contextual
probability. In principle, one can proceed with this interpretation without consider-
ing systems. Measurement is performed under context C , the end of the story! Of
course, context C should be repeatable. It should be reproducible sufficiently many
times (in the limit – infinitely many times).

We remark that in Kolmogorov’s measure-theoretic model the frequency inter-
pretation is expressed in the form of the law of large numbers. However, there are
some interpretational complications; von Mises strongly criticized attempts to use
the law of large numbers as a basis of the frequency interpretation.

Probabilities can also be interpreted as ensemble probabilities – proportions
of various results of measurements in sufficiently big ensembles.5 This definition
works especially well for finite sample spaces

P(a = α|C) = na
C (α)/N , (3.13)

where N is the number of elements in the finite ensemble SC representing context
C and na

C (α) is the number of observations with the result a = α in this ensemble.
Another popular interpretation of probability is the subjective interpretation. The

probability of an event A is a measure of personal belief in realization A. Contex-
tual probability can be interpreted as well as subjective probability, see especially
Chap. 7.

3.2 Formula of Total Probability with Interference Term

Let M = (C,O,D(O, C)) be a Växjö model such that the set of observables
O = {a, b} and a, b are dichotomous observables. Let C ∈ C. There are no rea-
sons to assume that all probability distributions in D(a, b, C) should be described
by a single Kolmogorov probability space P = (Ω,F , P). Thus the classical

4 This is the basic frequency probability model [299], see [161] for the modern presentation of von
Mises’ approach, its generalization and applications to QM.
5 See [161] for an attempt to generalize this definition to infinite samples by using so-called p-adic
probability.
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(Kolmogorovian) formula of total probability (FTP), Sect. 2.1.3, can be violated.
In general,

P(b = β|C) ≡ pb
C (β) �=

∑

α

pa
C (α)pβ|α. (3.14)

Thus it is impossible to predict the probability of the result b = β on the basis of
probabilities of results of a-measurements and transition probabilities.

The difference between the left-hand and right-hand sides, denoted by δ(β|a, C),
provides a probabilistic measure of b|a-interference with respect to context C. We
will see in Chap. 4 that this coefficient can be really interpreted in terms of interfer-
ence of “waves of probability.” Directly by definition of δ(β|a, C) we can write an
equation that is similar to the classical FTP (2.23)

pb
C (β) =

∑

α

pa
C (α)pβ|α + δ(β|a, C). (3.15)

This formula has the same structure as the quantum formula of total probability
(2.59): [classical part] + additional term, cf. (2.59). We will use in future, Chapter 7,
the following simple fact:

∑

β∈Xb

δ(β|a, C) = 0. (3.16)

To write the additional term in the same form as in the quantum representation
of probabilistic data, we perform the normalization of the probabilistic measure of
interference by the square root of the product of all probabilities

λ(β|a, C) = δ(β|a, C)

2
√∏

α pa(α)pβ|α
. (3.17)

The coefficient λ(β|a, C) also will be called the probabilistic measure of interfer-
ence. By using this coefficient we can rewrite (3.15) in the QL form:

pb
C (β) =

∑

α

pa
C (α)pβ|α + 2λ(β|a, C)

√∏

α

pa
C (α)pβ|α. (3.18)

The coefficient of interference λ(β|a, C) is well defined only in the case when all
probabilities pa

C (α), pβ|α are strictly positive.
A context C is said to be a-nondegenerate if

pa
C (α) �= 0 (3.19)
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for any value α of a. We remark that, for β ∈ Xb, context Cβ is a-nondegenerate if

pα|β ≡ P(a = α|Cβ) �= 0, α ∈ Xa . (3.20)

A b-nondegenerate context is defined in the same way. We remark that, for α ∈ Xa,

context Cα is b-nondegenerate if

pβ|α �= 0, β ∈ Xb. (3.21)

By considering a|b-conditioning, instead of b|a-conditioning, similarly to (3.18) we
have

pa
C (α) =

∑

β

pb
C (β)pα|β + 2λ(α|b, C)

√∏

β

pb
C (β)pα|β. (3.22)

Definition 3.4 Observables a and b are called supplementary if (3.20) and (3.21)
hold.

Remark 3.2 (Complementarity, supplementarity, incompatibility). Condition (3.20),
P(a = α|Cβ) �= 0, α ∈ Xa, is equivalent to condition P(a = α|Cβ) �= 1, α ∈ Xa .

Thus it is impossible to determine a value a = α by fixing the value b = β (selec-
tion context Cβ). The result of b-measurement can never predetermine the result of
subsequent a-measurement and vice versa – see (3.21). Thus any measurement of
a provides additional, or supplementary, information that has not been produced by
preceding measurement of b (and vice versa). I also would like to make a comment
on terminology. Of course, it would be much better to call the observables com-
plementary. However, Bohr has already reserved this terminology for observables
that are mutually exclusive, or incompatible. They cannot, in principle, be measured
simultaneously. Supplementarity does not imply mutual exclusivity (incompatibil-
ity). We are comfortable with possibility that a and b can be (but need not be)
measured simultaneously.

Theorem 3.1 Let reference observables be supplementary and let a context C ∈ C
be both a- and b-nondegenerate. Then QL formulas of total probability (3.18) and
(3.22) hold.

Finally, we remark that in application it may be useful to call the coefficient
of interference λ coefficient of supplementarity. The latter expresses better the real
meaning of this coefficient.



Chapter 4
Quantum-like Representation
Algorithm – QLRA

As was pointed out in Section 1.8, starting with FTP with the interference term
we can construct the representation of a special class of contexts of the Växjö
model, so-called trigonometric contexts, in complex Hilbert space. Then we obtain
Born’s rule and the representation of the reference observables by (noncommuta-
tive) self-adjoint operators â and b̂. (Noncommutativity of operators is equivalent
to consideration of supplementary reference observables.) If the matrix of transition
probabilities is doubly stochastic, we obtain the conventional QM. However, if it is
not doubly stochastic, our QL formalism is more general than the formalism created
by Dirac [90] and von Neumann [301].

We shall present a simple algorithm for transferring the probabilistic data
D(a, b, C) collected for context C, see Section 3.1.3, (3.6), into a complex prob-
abilistic amplitude, quantum-like representation algorithm, QLRA:

C �→ D(a, b, C) �→ ψ.

The main distinguishing feature of QLRA is that classical probabilistic data is
coupled with its QL image by Born’s rule.

Most amazing is the discovery of a representation of a special class of contexts
(probabilistic data), not by complex but by hyperbolic probabilistic amplitudes.1

Probabilistic data can be classified by estimation of the interference coefficient λ.

If it does not exceed 1, data can be represented in complex Hilbert space, in the
opposite case in the hyperbolic one. The mixed hyper–complex representation also
can appear for some data. For simplicity we shall not consider it in this book,
see [214].

Recently QLRA was realized in the Mathematica-6 setup. It provides a way to
simulate and to visualize QLRA’s work. For the latter purpose we used represen-
tation of complex probability amplitudes (in the two-dimensional case) by vectors

1 Instead of the field of complex numbers C with elements z = x + iy, i2 = −1, the algebra
of hyperbolic numbers is considered, G : z = x + j y, j2 = +1. Here x, y are real numbers.
One can proceed in the hyperbolic framework parallel to the conventional complex Hilbert space
representation.

A. Khrennikov, Ubiquitous Quantum Structure,
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on the Bloch sphere. We created a simulator transforming probabilistic data of any
origin into Bloch vectors. The same was done in the hyperbolic case. Here we intro-
duced a hyperbolic analogue of the Bloch sphere, so to say the “Bloch hyperboloid”,
which is used for QL-visualization.

We remark that reading the sections on hyperbolic representation needs more
algebraic intuition. In practically all applications we proceed with the complex rep-
resentation of data. Thus, in principle, the reader can omit Sections 4.5 and 4.6.

The main presentation in this chapter is done under the assumption that the
matrix of transition probabilities Pb|a is doubly stochastic – DS. In fact, QLRA
works well even for non-doubly stochastic matrices, see Remark 4.2. However,
the structure of representation in, e.g., complex Hilbert space is essentially more
complicated than in the case of double stochasticity. Unlike the latter case, it is
impossible to represent both observables a and b by self-adjoint operators (symmet-
ric matrices): only one of them can be in general given by a self-adjoint operator,
the other can be non-self-adjoint. Thus, departure from the case of doubly stochas-
tic matrices induces generalization of the conventional (Dirac–von Neumann, see
Chapter 2) quantum formalism. We emphasize that Pb|a matrices which arise in
applications, e.g., to psychology, are typically non-doubly stochastic. Therefore,
although QLRA produces representation of data in Hilbert space, it is not the con-
ventional quantum representation (even in the complex case), see Section 4.4 for
details; see Section 12.5 for the generalized quantum formalism.

In fact, even the condition DS is not sufficient to obtain complete consistency
with conventional QM formalism. Under this condition we only mimic the most
essential features of QM: Born’s rule for both reference observables a and b and
representation of them by self-adjoint operators. The tricky point is that even if
both matrices of transition probabilities Pb|a and Pa|b are doubly stochastic, then
QLRA produces two in general nonequivalent (in the sense of unitary equivalence)
representations. They are equivalent only if observables are symmetrically condi-
tioned, i.e., condition (2.18) holds. I do not expect the appearance of such matrices
of transition probabilities – contextual probabilities for successive measurements –
in, e.g., psychology or economics. I suspect that in QM they appear as a trace of
existence of rotationally invariant physical space. It seems that “mental space” does
not have such a homogeneous structure, see [159, 181].

4.1 Inversion of Born’s Rule

We recall that Born’s rule (2.32) is an algorithm to transfer complex amplitudes
(or in the Hilbert space formalism – normalized vectors) to probabilities. This rule
was postulated by Max Born, see Remark 2.1. In fact, this chapter is devoted to the
“inverse Born’s rule problem:”

IBP (inverse Born problem): To construct a representation of probabilistic data
by complex probability amplitudes that match Born’s rule.
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Solution of IBP would provide a way to represent probabilistic data by “wave
functions” and operate with this data using linear algebra (as we do in conventional
QM). In particular, one would be able to find quantum-like (QL) effects in data
collected in any domain of science, e.g., interference of probabilities. We consider
the simplest situation.

Let M = (C,O,D(O, C)) be a contextual statistical model such that O = {a, b}.
These observables are dichotomous: a = α1, α2 and b = β1, β2. They can be phys-
ical (classical or quantum) observables or e.g. two questions that are used for tests
in psychology or cognitive or social science and so on. As usual, Xa = {α1, α2} and
Xb = {β1, β2}, the “spectra of observables”. We assume that these observables are
supplementary, see Definition 3.4.

We recall that, for each context C ∈ C, the data D(a, b, C) contain the matrix of
transition probabilities Pb|a = (pβ|α). There are also given probabilities pa

C (α), α ∈
Xa, and pa

C (β), β ∈ Xb, see (3.1).
Our aim is to represent this data by a probability amplitude ψ ≡ ψC (in the

simplest case it is complex valued) such that Born’s rule holds for both observables:

pb
C (β) = |〈ψ, eb

β〉|2 , pa
C (α) = |〈ψ, ea

α〉|2 , (4.1)

where {eb
β}β∈Xb and {ea

α}α∈Xa are orthonormal bases (which are also produced by
QLRA) for observables b and a, respectively. These observables are represented by
operators b̂ and â, which are diagonal in these bases.

4.2 QLRA: Complex Representation

In Section 3.2 we derived the following formula for interference of probabilities:

pb
C (β) =

∑

α

pa
C (α)pβ|α + 2λβ

√∏

α

pa
C (α)pβ|α , (4.2)

where the coefficient of interference (supplementarity) is

λβ ≡ λ(β|a, C) = pb
C (β) − ∑

α pa
C (α)pβ|α

2
√∏

α pa
C (α)pβ|α

. (4.3)

To simplify considerations, we shall proceed under the conditions

DS: The matrix of transition probabilities Pb|a is doubly stochastic. (All entries are
nonnegative and all rows and all columns sum to 1.)
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PO: Probabilistic data D(a, b, C) consist of strictly positive probabilities, i.e.,
context C is both a- and b-nondegenerate.2

We proceed under the following basic assumption (specifying the type of repre-
sentation):

RC: Coefficients of interference λβ, β ∈ Xb, are bounded by 1:

|λβ | ≤ 1 .

Probabilistic data D(a, b, C) or simply a context C such that RC holds is called
trigonometric, because in this case we have the conventional formula of trigonomet-
ric interference:

pb
C (β) =

∑

α

pa
C (α)pβ|α + 2 cos φβ

√∏

α

pa
C (α)pβ|α , (4.4)

where λβ = cos φβ. This is simply a new parametrization: a new parameter φ is
used, instead of λ. Parameters φβ are said to be b|a-relative phases for context C.

We defined these phases purely on the basis of probabilities.3 We denote the collec-
tion of trigonometric contexts by the symbol Ctr. By using the elementary formula

D = A + B + 2
√

AB cos φ = |
√

A + eiφ
√

B|2,

for real numbers A, B > 0, φ ∈ [0, 2π ], we can represent the probability pb
C (β) as

the square of the complex amplitude (Born’s rule)

pb
C (β) = |ψ(β)|2 . (4.5)

Here

ψ(β) ≡ ψC (β) =
√

pa
C (α1)pβ|α1 + eiφβ

√
pa

C (α2)pβ|α2 , β ∈ Xb . (4.6)

The formula (4.6) gives the QLRA. For any trigonometric context C , QLRA
produces the complex amplitude ψ. This algorithm can be used in any domain of
science to create the QL representation of probabilistic data.

2 We recall that from the very beginning observables a and b were chosen supplementary. Thus
elements of matrices of transition probabilities Pb|a and Pa|b are strictly positive.
3 We did not start with a linear space; in contrast, we define geometry from probability. In the
conventional quantum formalism, the formula of interference of probabilities is derived starting
directly with the Hilbert space. We recall that in QM interference of probabilities is derived via
transition from the basis for the a-observable to the basis for the b-observable. From the very
beginning observables are given by self-adjoint operators.
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We denote the space of functions ψ : Xb → C by the symbol Φ = Φ(Xb, C).
Since Xb = {β1, β2}, Φ is the two-dimensional complex linear space. By using
QLRA we construct the map J b|a : C tr → Φ(X, C), which maps probabilistic data
into complex amplitudes. The representation (4.5) of probability is nothing but the
famous Born rule. The complex amplitude ψ(β) can be called a wave function of
context C or data D(a, b, C).

By using the terminology of quantum information theory we can say that QLRA
represents probabilistic data (of a special sort, namely, trigonometric) by qubits.

We set eb
β(x) = δ(β − x), x ∈ Xb, Dirac delta-functions concentrated in points

β = β1, β2. Born’s rule for complex amplitudes (4.5) can be rewritten in the follow-
ing form:

pb
C (β) = |〈ψ, eb

β〉|2 ,

where the scalar product in the space Φ(Xb, C) is defined by the standard formula

〈ψ1, ψ2〉 =
∑

β∈Xb

ψ1(β)ψ2(β) . (4.7)

The system of functions {eb
β}β∈Xb is an orthonormal basis in the Hilbert space H =

(Φ, 〈 · , · 〉) :

ea
β1

=
(

1
0

)
, ea

β2
=

(
0
1

)
. (4.8)

Now let Xb ⊂ R (in general β is just a label for a result of observation). By
using the Hilbert space representation of Born’s rule we obtain the Hilbert space
representation of the expectation of the observable b,

E[b|C] =
∑

β∈Xb

β|ψC (β)|2 =
∑

β∈Xb

β〈ψC , eb
β〉〈ψC , eb

β〉 = 〈b̂ψC , ψC 〉 , (4.9)

where the (self-adjoint) operator b̂ : H → H is determined by its eigenvectors:
b̂eb

β = βeb
β, β ∈ Xb. This is the multiplication operator in the space of complex

functions Φ(Xb, C) : b̂ψ(β) = βψ(β). It is natural to represent the b-observable
(in the Hilbert space model) by the diagonal operator

b̂ =
(

β1 0
0 β2

)
(4.10)

Remark 4.1 All previous considerations can be applied to the non-doubly stochastic
matrix of transition probabilities Pb|a . In particular, the basic rule (4.6) determining
QLRA can be applied without double stochasticity, as well as (4.5), (4.9), (4.10).
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To solve IBP completely, we would like to have Born’s rule not only for the
b-variable, but also for the a-variable: pa

C (α) = |〈ψ, ea
α〉|2, α ∈ Xa . How can we

define the basis {ea
α} corresponding to the a-observable? Such a basis can be found

by starting with interference of probabilities. We have

ψ =
√

pa
C (α1) f a

α1
+

√
pa

C (α2) f a
α2

, (4.11)

where

f a
α1

=
(√

pβ1|α1√
pβ2|α1

)
, f a

α2
=

(
eiφβ1

√
pβ1|α2

eiφβ2
√

pβ2|α2

)
. (4.12)

The condition DS implies that the system of vectors { f a
αi

} is an orthonormal basis
iff the probabilistic phases satisfy the constraint (see [185, 186, 214])

φβ2 − φβ1 = π mod 2π , (4.13)

i.e., the phases cannot be chosen independently. Thus, instead of the a-basis (4.12),
which depends on phases, we can consider a new a-basis that depends only on the
matrix of transition probabilities Pb|a

ea
α1

=
(√

pβ1|α1√
pβ2|α1

)
, ea

α2
=

( √
pβ1|α2

−√
pβ2|α2

)
. (4.14)

In this basis ψ is represented as

ψ =
√

pa
C (α1)eα1 + eiφβ1

√
pa

C (α2)eα2 . (4.15)

The a-observable is represented by the operator â, which is diagonal with eigen-
values α1, α2 in the basis {ea

α}. The average of the observable a coincides with the
quantum Hilbert space average:

E[a|C] =
∑

α∈Xa

αpa
C (α) = 〈̂aψC , ψC 〉. (4.16)

We remark that the matrix of transition probabilities Pb|a was assumed to be doubly
stochastic. Thus

ea
α1

=
(√

p√
1 − p

)
, ea

α2
=

( √
1 − p

−√
p

)
. (4.17)
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Here p = pβ1|α1 = pβ2|α2 . In the basis {eb
β} the operator â is represented by the

matrix

â =
(

α1 p + α2(1 − p) (α1 − α2)
√

p(1 − p)

(α1 − α2)
√

p(1 − p) α1(1 − p) + α2 p

)
. (4.18)

In our approach only observables a and b (e.g., given in the form of questions)
were given from the very beginning. The matrix representation of these observables,
a → â, b → b̂, was constructed on the purely probabilistic basis (by using QLRA).

Suppose now that we have a third observable, say c. We can couple it either
with a or with b. In the first case we proceed with QLRA for the pair of reference
observables (c, a) and in the second case (c, b). We obtain two representations in
complex Hilbert space. Question: Under which conditions are they unitary equiva-
lent? Answer: If all possible pairs of observables are symmetrically conditioned. It
happens in QM, but I am sceptical that it may happen in, e.g., psychology.

4.3 Visualization on Bloch’s Sphere

Come back to conventional QM, Section 2.3, and consider two-dimensional com-
plex Hilbert space H2 = C × C. In quantum information theory it describes one
qubit. This model can be illustrated geometrically by using the so-called Bloch’s
sphere – the unit sphere in three-dimensional real space R3 given by the equation:
x2 + y2 +z2 = 1. It is possible to represent vectors of H2 by points on this sphere. In
this way one can cover the whole sphere. The algorithm of this representation is very
simple. Consider in H2 a basis, say |0〉, |1〉. As is common in quantum information
theory, we use Dirac’s notation. However, a mathematically educated reader can
relax: it is just an arbitrary basis in H2. Take a vector ψ ∈ H2 of the form

ψ = cos θ |0〉 + sin θeiφ|1〉 . (4.19)

It is mapped to the point on Bloch’s sphere given by spherical coordinates

x = sin 2θ cos φ, y = sin 2θ sin φ, z = cos 2θ.

We remark that up to complex factors c = eik, k ∈ [0, 2π ], any vector of the unit
sphere S of H2 can be represented in the form (4.19). Since a pure quantum state is
defined up to such a factor, all states are mapped to Bloch’s sphere. In other words,
the set S̃, see Section 2.3, of equivalent classes of the unit sphere S is isomorphic to
Bloch’s sphere.

We now combine QLRA and “Bloch’s representation algorithm”. We recall that
at the moment we work under condition RC – the coefficients of interference are
bounded by 1. First of all our computer program checks this condition. If RC is
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violated, then the program’s output is empty — no point on Bloch’s sphere. It is
convenient to use the QLRA output in the a-basis. Thus we make the identification

|0〉 = ea
α1

, |1〉 = ea
α2

.

We have pa
C (α1) = cos2 θ, pa

C (α2) = sin2 θ ; λβ1 = cos φ, sin φ = ±
√

1 − λ2
β1

.

Finally,

x = 2
√

pa
C (α1)pa

C (α2)λβ1 ,

y = ±2
√

pa
C (α1)pa

C (α2)
√

1 − λ2
β1

,

z = pa
C (α1) − pa

C (α2) .

In the computer program we make the parametrization of probabilities pa
C (α1) =

q, pa
C (α2) = 1 − q, pb

β1
= p, pb

β1
= 1 − p. Since we proceed under condition DS,

the elements of the matrix of of transition probabilities Pb|a can be parametrized as
pβ1|α1 = pβ2|α2 = P, pβ1|α2 = pβ2|α1 = 1 − P.

We see from Figs. 4.1 and 4.2 that Bloch’s sphere is sufficiently densely covered
by vectors (corresponding to complex probability amplitudes produced by QLRA).

Fig. 4.1 Transition probability P = 0.1
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Fig. 4.2 Transition probability P = 0.5

4.4 The Case of Non-Doubly Stochastic Matrices

As was already mentioned in Remark 4.1, the b-representation works well even for
non-doubly stochastic Pb|a . The problem arises when we construct the
a-representation. The expansion (4.11) can be written as well: ψC = √

pa
C (α1) f a

α1
+√

pa
C (α2) f a

α2
. However, unlike the case of double stochasticity, we cannot move to

the basis {ea
α} given by (4.14). We should try to proceed with the basis { f a

α }. The
crucial difference is that the second vector of this basis depends irreducibly on con-
text C via phases φβ ≡ φ(β|a, C). As was shown in [214], it is impossible to find a
shift γ such that φβ1 −φβ2 = γ, mod 2π, for any nontrivial family of contexts. Thus
f a = f a;C and nothing can be done. In this case it is not sufficient to construct
the map J b|a : C tr �→ H, mapping contexts (trigonometric) into complex proba-
bility amplitudes. This map should be completed by the map J b|a : C tr �→ E(H),
where E(H) is the space of all (in general nonorthogonal) bases in H consisting of
normalized vectors. Concerning the latter, we remark that, for any α, 〈 f a

α , f a
α 〉 = 1.

Here C �→ f a;C , where f a
α1

=
(√

pβ1|α1√
pβ2|α1

)
, f a

α2
=

(
eiφβ1

√
pβ1|α2

eiφβ2
√

pβ2|α2

)
.

Let us consider a finite-dimensional Hilbert space H. Let E = {e j }n
j=1 be a basis.

Then each ψ ∈ H can be expanded with respect to this basis
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ψ =
∑

j

u j e j , u j = u j (ψ) ∈ C. (4.20)

Denote linear functionals ψ → uα(ψ) (determining coefficients) corresponding
to the basis f a;C by ua;C

α . Then we have

pa
C (α) = |ua;C

α (ψC )|2. (4.21)

This is the generalized Born’s rule.
Thus in the general case one should operate with nonorthogonal bases to repre-

sent observables. One can proceed by using nonsymmetric operators. The most nat-
ural description is given in the form of positive operator valued measures (POVMs),
see Section 12.5. However, the use of such generalized quantum observables is not
the crucial deviation from the conventional quantum theory. Similar generalized
observables are widely used in quantum information theory. In this theory one can
also not proceed with conventional Dirac–von Neumann observables given by sym-
metric operators (orthogonal bases). POVMs are also used there [46, 148]. The only
difference is that we should use a more general class of POVM. Unlike [46, 148],
our POVM can be nonnormalized, see again Section 12.5. The crucial point is that,
unlike QM, context cannot be represented just by a “state”, a complex probabil-
ity amplitude. Even a POVM (and in the simplest case under consideration in this
section – basis) depends on context.

In general in applications to cognitive science and psychology matrices of transi-
tion probabilities Pb|a are not doubly stochastic, see Chapter 6 and Chapter 7. In this
framework one cannot create context-independent representation of both reference
observables.

4.5 QLRA: Hyperbolic Representation

4.5.1 Hyperbolic Born’s Rule

Instead of the field complex numbers C, we shall use so-called hyperbolic numbers,
namely, the two-dimensional Clifford algebra, G. We call this algebra hyperbolic
algebra.hyperbolic algebra Denote by the symbol j the generator of the algebra
G of hyperbolic numbers: j2 = 1. The algebra G is the two-dimensional (com-
mutative) real algebra with the basis e0 = 1 and e1 = j. Elements of G have the
form z = x + j y, x, y ∈ R, where R is the field of real numbers. We introduce
an involution in G by setting z̄ = x − j y and set |z|2 = zz̄ = x2 − y2. We
define a hyperbolic exponential function by using a hyperbolic analogue of Euler’s
formula: e jθ = cosh θ + j sinh θ, θ ∈ R. We remark that e jθ1 e jθ2 = e j(θ1+θ2), e jθ =
e− jθ , |e jθ |2 = cosh2 θ − sinh2 θ = 1. We also have cosh θ = e jθ +e− jθ

2 , sinh θ =
e jθ −e− jθ

2 j . We shall use the following elementary formula:
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D = A + B ± 2AB cosh φ = |
√

A ± e jφ
√

B|2, (4.22)

for real coefficients A, B > 0.

We start again with the formula for interference of probabilities (4.2). The con-
dition of double stochasticity is assumed again. However, instead of coefficients of
interference that satisfy condition RC (which determines the complex representa-
tion), we consider coefficients that satisfy the following condition:

RH: Coefficients of interference λβ, β ∈ Xb, are larger than one:

|λβ | ≥ 1.

Probabilistic data D(a, b, C) or simply a context C such that RH holds is called
hyperbolic, because in this case the interference of probabilities (4.2) is represented
in the hyperbolic form:

pb
C (β) =

∑

α

pa
C (α)pβ|α + 2εβ cosh φβ

√∏

α

pa
C (α)pβ|α, (4.23)

where εβ = sign λβ and

|λβ | = cosh φβ.

This is simply a new parametrization: a new parameter φ is used, instead of λ.

Parameters φβ are said to be hyperbolic b|a-relative phases for the data C. We
remark, see [185, 186, 188, 214], that

εβ1 = −εβ2 . (4.24)

Thus the interference terms have opposite signs.
We denote the collection of hyperbolic contexts by the symbol Chyp.

By using (4.23) we can represent the probability pb
β as the square of the hyper-

bolic amplitude:

pb
β = |ψ(β)|2, (4.25)

where

ψ(β) =
√

pa
C (α1)pβ|α1 + εβe jφβ

√
pa

C (α2)pβ|α2 . (4.26)

Thus under conditions DS, PO, and RH we represent contexts by the hyperbolic
probability amplitudes. The domain of application of QLRA has been extended to
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cover a new class of contexts (probabilistic data on contexts) – producing coeffi-
cients of interference exceeding one. The family of contexts satisfying these condi-
tions is denoted by the symbol Chyp – hyperbolic contexts.

In fact, QLRA covers all possible data. As shown in [185, 186, 188, 214], under
condition DS any collection of data D(a, b, C) (for supplementary observables) is
either trigonometric or hyperbolic. Thus in this case one could not have one coeffi-
cient of interference less than 1 and another larger than 1. But if DS is violated, then
contexts can exhibit a mixed hyper-trigonometric behavior.

4.5.2 Hyperbolic Hilbert Space Representation

Hyperbolic Hilbert space is G-linear space (module) H with a G-linear scalar prod-
uct: a map 〈·, ·〉 : H × H → G that is

1) linear with respect to the first argument:
〈az + bw, u〉 = a〈z, u〉 + b〈w, u〉, a, b ∈ G, z, w, u ∈ H;

2) symmetric: 〈z, u〉 = 〈u, z〉;
3) nondegenerate: 〈z, u〉 = 0 for all u ∈ H iff z = 0.

We remark that this generalization of scalar product is not positively defined.
As was pointed out in the introduction to this chapter, in the hyperbolic case we

can proceed in parallel with the complex case. We introduce the space Φ(Xb, G) of
functions ψ : Xb → G. Since Xb = {β1, β2}, Φ(Xb, G) is the two-dimensional
G-module. We define the G-scalar product by

〈ψ1, ψ2〉 =
∑

β∈Xb

ψ1(β)ψ2(β) (4.27)

with conjugation in the algebra G. We consider hyperbolic Hilbert space H =
(Φ, 〈·, ·〉). Denote by {eb

β}β∈Xb the orthonormal basis (4.8). Thus we have the hyper-
bolic analogue of Born’s rule pb

β = |〈ψ, eb
β〉|2.

Let Xb ⊂ R. By using Born’s rule, we obtain the hyperbolic Hilbert space
representation of the average of the b-observable. Here the (self-adjoint) operator
b̂ : H → H is again determined by its eigenvectors: b̂eb

β = βeb
β, β ∈ Xb. This is

the multiplication operator in the space of hyperbolic-valued functions Φ(Xb, G) :
b̂ψ(β) = βψ(β). Thus QLRA creates a map from the collection of hyperbolic
contexts into hyperbolic Hilbert space: J b|a : Chyp → H.

By generalizing the terminology of quantum information theory we call normal-
ized vectors ψ ∈ H hyperbolic qubits.

Thus J b|a maps probabilistic data into hyperbolic qubits. To solve IBP com-
pletely (in the hyperbolic case), we would like to have Born’s rule not only for the
b-variable, but also for the a-variable: pa

C (α) = |〈ψ, ea
α〉|2, α ∈ Xa .
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How can we define the basis {ea
α} corresponding to the a-observable? Such a

basis can be found starting with interference of probabilities. We have for ψ-output
of QLRA ψ = √

pa
C (α1) f a

α1
+ √

pa
C (α2) f a

α2
, where

f a
α1

=
(√

pβ1|α1√
pβ2|α1

)
, f a

α2
=

(
εβ1 e jφβ1

√
pβ1|α2

εβ2 e jφβ2
√

pβ2|α2

)
. (4.28)

The condition DS implies that the system of vectors { f a
αi

} is an orthonormal basis iff
the probabilistic phases satisfy the constraint φβ2 = φβ1 . We also recall that εβ2 =
−εβ1 . Thus, instead of the a-basis (4.28), which depends on phases and signs, we can
consider a new a-basis, which depends only on the matrix of transition probabilities

Pb|a – ea
α1

=
(√

pβ1|α1√
pβ2|α1

)
, ea

α2
=

( √
pβ1|α2

−√
pβ2|α2

)
. In this basis ψ is represented as

ψ = √
pa

C (α1)ea
α1

+ εβ1 e jφβ1
√

pa
C (α2)ea

α2
. The a-observable is represented by the

operator â, which is diagonal with eigenvalues α1, α2 in the basis {ea
α}. The average

of the observable a coincides with the hyperbolic Hilbert space average, see (4.16).
In the basis {eb

β} this operator is represented by the matrix (4.18). Thus the difference
between complex and hyperbolic representations is really minimal.

4.6 Bloch’s Hyperboloid

Consider hyperbolic QM, i.e., quantum formalism based on hyperbolic Hilbert
space, see [174, 172] for more details. Consider two-dimensional hyperbolic Hilbert
space H2 = G × G. It describes one “hyperbolic qubit.” As well as in the complex
case, this model can be illustrated geometrically by using what we call Bloch’s
hyperboloid – a hyperboloid in three dimensional real space R3 :

x2 − y2 + z2 = 1.

It is possible to represent vectors of H2 by points on this hyperboloid. In this way
one can cover the whole hyperboloid. The algorithm of this representation is very
simple. Consider in H2 a basis, say |0〉, |1〉. Take a vector ψ ∈ H2 of the form

ψ = cos θ |0〉 + ε sin θe jφ|1〉, (4.29)

where ε = εβ1 , φ = φβ1 . It is mapped to the point on Bloch’s hyperboloid given by
hyperbolic coordinates

x = ε sin 2θ cosh φ,

y = sinh φ,

z = cos 2θ cosh φ.
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Fig. 4.3 Transition
probability P = 0.1

Fig. 4.4 Transition
probability P = 0.3
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Fig. 4.5 Transition
probability P = 0.5

Fig. 4.6 Transition
probability P = 0.9
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We now combine this “hyperbolic Bloch’s algorithm” with QLRA. We recall
that we work under condition RH. First of all our computer program checks this
condition. If RH is violated, then the program’s output is empty – no point on
Bloch’s hyperboloid. We make the identification |0〉 = ea

α1
, |1〉 = ea

α2
and set

pa
C (α1) = cos2 θ, pa

C (α2) = sin2 θ. We also have λβ1 = εβ1 cosh φβ1 . So, we

proceed as |λβ1 | = cosh φβ1 , ±
√

λ2
β1

− 1 = sinh φβ1 . Finally

x = 2ε

√
pa

C (α1)pa
C (α2)|λβ1 |,

y = ±
√

λ2
β1

− 1,

z = (pa
C (α1) − pa

C (α2))|λβ1 |.

In the program we make the same parametrization of probabilities as in the spher-
ical case. Examples of the program’s output are given in Fig 4.3–4.6.



Chapter 5
The Quantum-like Brain

In Chapter 3, the contextual probabilistic model was invented: the Växjö model.
Now it is applied to the description of mental processes. This description is based
on QL representations – by probability amplitudes – in cognitive, social and political
sciences, psychology, and economics. In particular, this model suggests interesting
cognitive experiments to check QL structures of mental processes. The crucial role
is played by interference of probabilities for mental observables. Recently, such
experiments based on recognition of ambiguous images have been performed by
Conte et al. [66, 67]. These experiments confirmed my prediction [173, 180] of the
QL behavior of mind. In the Växjö approach “quantumness of mind” has no direct
relation to the fact that the brain (as any physical body) is composed of quantum
particles. A new terminology quantum-like mind is used. Cognitive QL behavior
is characterized by a nonzero coefficient of interference (supplementarity) λ, see
Section 3.2. It can be found on the basis of statistical data. The hypothesis of QL
mind can be tested experimentally!

The Växjö model predicted, see Chapter 4, not only cos θ interference of prob-
abilities, but also hyperbolic cosh θ interference. The latter type of interference has
never been observed for physical contexts, but such a possibility cannot be excluded
for cognitive systems, see [275] and Chapter 7 for more details.

In this chapter, a model of the brain’s functioning as a QL computer is proposed;
the difference between quantum and QL computers is discussed.

5.1 Quantum and Quantum-like Cognitive Models

The idea that the description of the brain’s functioning, cognition, and conscious-
ness cannot be reduced to the theory of neural networks and dynamical systems
(see Ashby [19], Hopfield [150], Amit [15], Strogatz [285], van Gelder [296],
van Gelder and Port [297]), and that quantum theory may play an important role
has been discussed in a huge variety of forms, see, e.g., Whitehead [303] , Orlov
[247], Albert and Loewer [10], Albert [11], Healey [138], Lockwood [229], Pen-
rose [249, 250], Donald [ 91– 93], Jibu and Yasue [154], Bohm and Hiley [40],
Stapp [284], Hameroff [128, 129], Loewer [230], Hiley and Pylkkänen [144],
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Deutsch [86], Barrett [29], Khrennikov [161, 173, 175, 176, 180, 198], Vitiello [298]
and literature therein.

One dominant approach to the application of QM formalism to the description
of brain functioning is quantum reductionism, see e.g. Hameroff [128, 129] and
Penrose [249, 250]. This was a new attempt at physical reduction of mental pro-
cesses, cf. Ashby [19], Hopfield [150], Amit [15]. This is an interesting project of
great complexity and it is too early to draw any conclusions about its future. One
important contribution of quantum reductionism is critique of the classical reduc-
tionist approach (neural networks and dynamical systems approach) and artificial
intelligence, see especially Penrose [249, 250]. On the other hand, quantum reduc-
tionism has been strongly criticized by neurophysiologists and cognitive scientists,
who assume that the neuron is the basic unit of processing of mental information.

We mention the quantum logic approach: mind cannot be described by classical
logic and the formalism of quantum logic should be applied. Orlov [247] published
the first paper in which this idea was explored. It is important to remark that he
discussed interference within a single mind. Such an interference was also discussed
by Deutsch [86]. We point to extended investigations based on the many-minds
approach, see Healey [138], Albert and Loewer [10], Albert [11], Lockwood [229],
Donald [91– 93], Loewer [230], Barrett [29], etc. Finally, we mention attempts to
apply Bohmian mechanics to describe mental processes – Bohm and Hiley [40],
Hiley and Pylkkänen [144], Khrennikov [161], Choustova [54–62].

In [198] I developed the theory of “quantum-like mind”, which is presented in
this chapter.1 As was already emphasized, the QL approach has nothing to do with
quantum reductionism. Of course, I do not claim that my approach implies that
quantum physical reduction of mind is totally impossible. However, I can explain
the main QL feature of mind – interference of minds – without reduction of mental
processes to quantum physical processes. Consequently my QL model does not face
such horrible problems of QM as nonlocality or death of realism.2 One may ask:

Why is it so important to combine realism with quantum probabilistic features in
neurophysiology, cognitive sciences, psychology and sociology?

A fundamental consequence of the possibility of such a combination is that
macroscopic neuronal structures (in particular, a single neuron) as well as cognitive
and psychological contexts can exhibit QL features. It is possible to eliminate the
fundamental problem disturbing adherents of quantum physical reductionism:

How can one combine the neuronal (macroscopic) and quantum (microscopic)
models?

1 Recently, Busemeyer, a professor of psychology, has explained some paradoxical features of
psychological behavior by using a QL model that was based on an approach very similar to that
developed in the author’s papers, namely, on the QL deformation of the classical formula of total
probability, see e.g. [48, 49]. It is amazing that people working in such different domains of science
as foundations of probability theory and psychology arrive at similar models.
2 I reject the idea of using quantum nonlocality in cognitive science as totally absurd.
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It is a terrible problem for everybody who tries to proceed with quantum reduc-
tionism, e.g., for Penrose [250]: “It is hard to see how one could usefully consider
a quantum superposition consisting of one neuron firing, and simultaneously non-
firing.”

In the Växjö model it is possible to operate with QL probabilities without appeal-
ing to such a notion as superposition of states of a single system, see Chapter 4. All
distinguishing probabilistic features of quantum mechanics can be obtained with-
out it. This implies that, unlike quantum reductionism, there is no need to look for
the microscopic basis of mental processes.3 In my model “mental interference”
is not based on superposition of individual quantum states. Mental interference is
described in a classical (but contextual) probabilistic framework. A mental wave
function represents not a mental state of an individual cognitive system, but a neu-
rophysiological, cognitive or psychological context C, see Chapter 4.4

In particular, Växjö model can be applied to the description of mental obser-
vations in the QL terms. We start with mental interference, which is defined as
interference of probability distributions of two supplementary mental observables,
see Definition 3.2, Section 3.2. For example, in psychology such observables can
be realized in the form of two supplementary questions that are asked to people
participating in a test. A condition of supplementarity can be checked easily on the
basis of experimental statistical data collected in the form of “yes-no” answers to
questions. The magnitude of mental interference is characterized by a coefficient of
interference (or supplementarity) λ. Depending on this magnitude we obtain differ-
ent representations of probabilities in experiments with cognitive systems. In partic-
ular, we obtain the QL representation of cognitive (or social, or economic) contexts
in complex (or maybe even hyperbolic) Hilbert space, by using the representation
algorithm, QLRA, given in Chapter 4. This approach should be justified experimen-
tally. A priori there is no reason for cognitive systems to exhibit QL probabilistic
behavior, in particular, nontrivial interference. We present the detailed description
of a few experimental tests to check the hypothesis of QL probabilistic behavior. We
hope that a variety of such tests will be performed in various domains of science:
psychology, cognitive science and sociology, economics, see [66, 67].

3 Reductionists should do this and go to the deepest scales of space and time to find some rea-
sonable explanation of superposition and interference (e.g., go inside microtubules or to scales of
quantum gravity).
4 My comparison of the contextual approach and quantum reductionism cannot be used as an
argument against the latter. One could not exclude the possibility that mental processes could be
reduced to quantum physical processes, e.g., in microtubules, or that the act of consciousness is
really induced by the collapse of the wave function of superposition of two mass states. However,
the Växjö model makes it possible to use quantum mathematical formalism in neurophysiology,
cognitive science, psychology, and sociology without all those tricky (quantum physical) things
that are so important in the reductionist approach.
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5.2 Interference of Minds

5.2.1 Cognitive and Social Contexts; Observables

We consider examples of cognitive contexts and observables that can be measured
for these contexts.

1) C is a procedure of selection of a specific group SC of people or animals (cre-
ation of an ensemble of cognitive systems). Context C is represented by this group
SC . For example, a group Sprof.math. of professors of mathematics is selected. Then
one can perform “mental measurements” by asking questions or giving tasks. In the
simplest experiment, to check interference of minds, two questions, say a and b,

are asked. We can select a group of people of a particular age or a group of people
having a specific mental state: for example, people in love, hungry or depressed.

2) C is a learning procedure that is used to create some specific group of people
or animals. For example, rats are trained to react to a special stimulus. Students
are trained in probability theory. Here a and b are two supplementary questions
(Definition 3.4) given in the exam. For instance, a is a theoretical question or task,
e.g., to prove the central limit theorem (CLT), and b is a practical question, e.g.,
to find the average with respect to a given probability distribution.5 In this exam-
ple, post-measurement condition (3.5) holds (Section 3.1.1: “projection postulate”).
Suppose that a student proved CLT. Ask him to do the same, within a reasonable
period of time. We can be practically sure (up to small statistical deviations) that he
will prove it again. Thus

P(to prove CLT|CLT was proven) = 1

as well as P(not prove CLT|CLT was not proven) = 1.

3) C is a collection of paintings, Cpaint (e.g., the collection of the Hermitage
in St. Petersburg) and people interact with Cpaint by looking at the pictures. Men-
tal measurements are based on questions which those people are asked about this
collection.

4) C is “context of classical music”, Cclmus., and people interact with Cclmus. by
listening to this music. In principle, we need not use an ensemble of different people.
It can be one person of whom we ask questions each time after he has listened to a
CD (or radio program) of classical music.

The last two examples illustrate why we started with the contextual approach and
not simply ensembles of systems. A cognitive context need not be identified with
an ensemble of cognitive systems representing this context. For us Cpaint and Cclmus.

and not ensembles of people representing them, SCpaint and SCclmus. , are basic.

5 The problem of supplementarity is very delicate. For example, if the first task was to prove CLT
and the second to find the average with respect to a concrete Gaussian distribution, then a and b
are definitely not supplementary: P(b = +|a = +) = 1 and P(b = −|a = +) = 0. However, if
the first question was on the Poisson distribution and the second to find the average with respect to
the Gaussian distribution, then they can be considered as supplementary: P(b = ±|a = ±) > 0.
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We can also consider social contexts, for example, social classes: proletariat and
bourgeois contexts; or war and revolution contexts, financial crises context, poverty
and welfare contexts, and so on.6

5.2.2 Quantum-like Structure of Experimental Mental Data

We describe a mental interference experiment. Let a ∈ Xa = {α1, α2} and b ∈ Xb =
{β1, β2} be two dichotomous mental observables, e.g., two questions: α1=‘yes’,
α2=‘no’, β1=‘yes’, β2=‘no’. We use these two fixed reference observables for the
probabilistic and then QL representations of cognitive reality given by some context
C.7 This context is assumed to be reproducible such that repeatable measurements
of both reference observables can be performed. It can be very sensitive and each
measurement may change it essentially.

We perform observations of b under C and obtain frequencies

νb
C (β) = the number of results b = β

the total number of observations
, β ∈ Xb.

When the total number of observations N → ∞, the frequencies νb
C (β) ≡ νb

C (β; N )
approaches the probability pb

C (β) of getting the result β for the b-observation. We
also define frequencies νa

C (α) and probabilities pa
C (α) for the a-observation.8

As was supposed in Section 3.1, selection-contexts are given, e.g., Cα, α ∈ Xa .

They are created in the following way. Measurements of a are performed (the ques-
tion a is asked to all cognitive systems selected for this experiment). Cognitive
systems who answered a = α are selected. The Cα produces an ensemble of cogni-
tive systems, say SCα

.9 Now b-measurements are performed under cognitive context
Cα – for the ensemble SCα

. We find frequencies (β ∈ Xb, α ∈ Xa) :

νβ|α = the number of the result b = β under context Cα

the total number of observations under context Cα

,

6 The Växjö model can be used in social and political sciences and even in history. One can try to
find QL corresponding data. It would be amazing to show that the historical process can exhibit
QL features.
7 In general by choosing another pair of reference observables we shall obtain another represen-
tation of cognitive contextual reality. Can we find two fundamental mental observables? This is a
very difficult question. In physics the answer is well known: the position and the momentum form
the fundamental pair of reference observables. Which mental observables can be chosen as mental
analogons of the position and the momentum?
8 Observables, e.g., questions, should be supplementary, Definition 3.4. The answer, e.g., a =‘yes’
does not pre-determine (statistically) the answer to the subsequent question b. Moreover, the ques-
tions should satisfy post-measurement condition (3.5), Section 3.1.1: “projection postulate”.
9 In the general case the situation is more complicated, Section 5.2.3. However, we restrict con-
siderations to the mentioned scheme of creation of selection contexts. In any event it was used in
experiments [66].
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and the corresponding probabilities pβα. Data to find the interference (supplemen-
tarity) coefficient (3.17) are collected. We operate with frequencies

λex(b = β|a, C) = νb
C (β) − νa

C (α1)νβ|α1 − νa
C (α2)νβ|α2

2
√

νa
C (α1)νβ|α1ν

a
C (α2)νβ|α2

. (5.1)

An empirical situation with λex(b = β|a, C) �= 0 would yield evidence for
QL behavior of cognitive systems. In this case, starting with the (experimentally
calculated) coefficient of interference λexp(b = β|a, C) we can proceed either to
the conventional Hilbert space formalism (if this coefficient is bounded by 1) or to
so-called hyperbolic Hilbert space formalism (if this coefficient is larger than 1), see
Chapter 4 and more in the book [214].

5.2.3 Contextual Redundancy

We remark that in general transition probabilities pβα can depend on the original
cognitive context C :

pβ|α = pC (β|α)

To perform the [a = α]-selection, one should first perform measurement of a for
some initial context C. In general, there is no reason to hope that after subsequent
measurement of another (even supplementary) observable, denoted by b, depen-
dence on C will disappear.

Let us consider the very special case when dependence of the transition proba-
bilities pC (β|α) on C is redundant. For example, students belonging to the group
SC (which was trained under the mental or social conditions C) should answer the
question a. After this we select a new ensemble SCα

of students who have answered
a = α. If this question is so important for a student that he totally forgets about
the previous C-training and remembers only the previous answer a = α, then the
transition probabilities do not depend on C and the index C can be omitted:

pC (β|α) ≡ pβ|α. (5.2)

We call (5.2) the condition of contextual redundancy. Condition of contextual redun-
dancy is similar to condition of Markovness in classical probability theory.

The total destruction of memory of the previous context C (i.e., learning proce-
dure) is too strong a metaphor. It is better to consider an essential state update. Thus
the memory on C is still present, but the experience generated by an interaction
with the question a will dominate in interaction with a subsequent question b. In
the example with the exam in probability theory, see Sect. 5.2.1, by proving CLT a
student does not destroy the memory of the course in probability theory. However,
his state of mind was essentially updated in the process of proving CLT. Consider
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a number of contexts C, C ′, . . . corresponding to courses in probability theory at
various universities. Consider [a = +]-selection contexts

Ca
+(C), Ca

+(C ′), . . . , (5.3)

a selection of students who proved CLT in the exams on probability theory. For a
sufficiently large spectrum of supplementary questions, the condition of contextual
redundancy (5.2) holds. Thus contexts (5.3) can be identified and considered as one
context, selection context Ca

+. Of course, condition (5.2) cannot hold for all possible
(supplementary) questions b. However, in this book we typically operate only with
a pair of supplementary questions.

We remark that contextual redundancy takes place in QM for observables with
nondegenerate spectra. Here the transition probabilities do not depend on the origi-
nal context C, the preparation procedure for a quantum state ψ, see formula (2.50),
Sect. 2.4. One can (but need not!) also appeal to von Neumann’s projection pos-
tulate, Sect. 12.3. If quantum observable a is represented by the operator â having
nondegenerate spectrum, then the post-measurement state is just one of the eigen-
vectors of â. Memory about the pre-measurement state ψ is completely destroyed
by a-measurement. We remark that QM can be considered as a contextual model:
contexts are given by quantum states: C ≡ Cψ, see Sect. 12.4. Thus under the
condition of contextual redundancy we obtain a class of Växjö models that is the
closest to QM (for observables with nondegenerate spectra).

However, we do not want to restrict our considerations to this class of models.
How can we proceed in the general case? Some context, say Ω ∈ C, should be
chosen as a “basic context”. Corresponding contexts Ca

α(Ω) are declared as Ca
α-

contexts of the model, cf. with Kolmogorovian contextual models in Sect. 12.4. In
the latter case the total space of elementary events Ω is considered as the basic
context, and here Ca

α ≡ Ca
α(Ω) = {ω ∈ Ω : a(ω) = α}.

The problem of finding of an adequate basic context Ω ∈ C is very complicated.
In fact, transition probabilities encode correlations between observables, see (3.9),
Section 3.1.4. Therefore the basic context Ω should be selected to represent the pure
(as much as possible) correlation effect between observables a and b. Of course, it
depends of the concrete pair of reference observables a and b, i.e., Ω = Ω(a, b).

Finally, we come back once again to the example with the exam in probability
theory, see Sect. 5.2.1. To prove CLT, a student should invest a lot of effort, in
particular, this (very complicated) proof takes time. Thus, as in QM, the process of
measurement is a complex process of interaction between a system and a measure-
ment device. In the present example, systems are students, but the a-measurement
device is CLT, i.e., a mental structure.10

10 Well, there are also teachers in this exam.
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5.2.4 Mental Wave Function

The algorithm (QLRA): C → ψC , Chapter 4, represents cognitive, social, psycho-
logical, and economic contexts by complex and hyperbolic amplitudes. To obtain a
closer analogy with QM, one can speak about the mental wave function. One need
not imagine “mental waves.” In the contextual approach the mental wave function
ψ ≡ ψC is simply a special representation of probabilistic data collected about
context C with the aid of two (specially selected) reference observables a and b.

I speculate that some cognitive systems developed (in the process of evolution)
the ability to operate with mental wave functions, i.e., to represent probabilistic data
in linear space. Roughly speaking, such a system does not feel individual counts,
but the general statistics encoded in the ψC . In this sense the mental wave function
ψC is an element of mental reality. Encoding by ψC provides a possibility for linear
processing of data.

5.3 Quantum-like Projection of Mental Reality

The QL representation for mental processes is a projection of the neuronal model to
the complex (or hyperbolic) Hilbert space model. It induces huge loss of information
produced by the neurons.

5.3.1 Social Opinion Poll

Let us consider a family of social contexts C such that each context corresponds to
the society of some country: CUSA, CGB, CFR, ..., CGER, ... and let us consider two
reference observables given by the questions

a) “Are you against pollution?” and
b) “Would you like to have lower prices for gasoline?”

It is supposed that observables a and b are supplementary:

P(b = yes|a = no) �= 0, P(b = no|a = no) �= 0,

P(b = yes|a = yes) �= 0, P(b = no|a = yes) �= 0.

Moreover, the transition probabilities P(b = β|a = α) do not depend on a society
C, condition of contextual redundance holds. For example, the proportion of people
who are against pollution among people who are satisfied by prices for gasoline is
the same in the USA, Great Britain, France, and so on. Of course, this is a rather
strong assumption.

In our QL-model societies are represented by complex (or maybe hyperbolic?)
probability amplitudes
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ψUSA, ψGB, ψFR, ..., ψGER, ...

These mental wave functions can be used to describe the dynamics of these societies.
However, answers to the questions a and b do not completely characterize a society.
Thus this QL representation induces a huge loss of information about the society.

5.3.2 Quantum-like Functioning of Neuronal Structures

Let us consider two coupled neural networks G1 and G2. They interact with a family
of contexts C = {C}, which are given by input signals into both networks. For
example, contexts C = {C} can be visual images and networks G1 and G2 contribute
to recognition of these images, e.g., G1 is responsible for contours and G2 for colors.
I emphasize from the very beginning that in my model an image in the brain is not
created by networks. It is the result of the QL representation of statistics of signals
produced by networks.

We use the so-called frequency-domain approach, see for example Hoppensteadt
[151], and assume that cognitive information is presented by frequencies of firing
of neurons. We recall that in the process of interaction with the cognitive context
frequencies of firing of neurons in, e.g., the network G1 are synchronized. It is
possible to speak about the “network frequency.” Finally, we point out that each
network can be widely distributed in the brain. Thus spatially separated neurons fire
synchronously.

Typically a network has a hierarchic structure and the network’s frequency can
be identified with the frequency of firing of the network’s conductor. Denote con-
ductors of G1 and G2 by symbols cG1 and cG1 . We are aware that the question
of the presence of a hierarchic structure of neural networks in the brain and, in
particular, the existence of neuron-conductors [14], “grandmother neurons”, is still
a source of intense debate in the neurophysiological community, see, e.g., [232] on
experimental results in favor of the neural hierarchy. Therefore later we will attempt
to exclude such conductors from our model. However, the use of them makes the
model more illustrative.

Consider two reference observables a, b. Here a = + if the neuron cG1 is firing,
and a = − if the neuron cG1 is non-firing, and b = + if the neuron cG2 is firing,
and b = − if the neuron cG2 is non-firing. Probabilities pa

C (±), pb
C (±) are defined

by frequencies of firing. Consider a possible mechanism of production of frequency
probabilities:

Two time scale parameters, depending on the cognitive system, are given: Δ is the
time scale of production of probabilities (“probabilistic images”), δ is the duration
(average) of a pulse from a neuron. Set τ = δ/Δ. Let na

C (+) be the number of pulses
produced by G1 during the interval Δ (in the process of interaction with cognitive
context C). Then probability is given by

pa
C (+) = τna

C (+), pa
C (−) = 1 − pa

C (+).
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Probabilities pb
C (±) are defined in the same way. These probabilities are easily

expressed in networks’ frequencies. Let G1 oscillate (synchronously) with fre-
quency f G1

C oscillations per second. Then na
C (+) = f G1

C Δ and

pa
C (+) = f G1

C δ. (5.4)

Thus it is possible to define probabilities even without involving hierarchic struc-
tures and conductor neurons. It is enough to know the frequencies of synchro-
nized (in the process of interaction with C) firings for the corresponding networks.
These probabilities provide partial information on the neuronal representation of
context C.

Transition probabilities are defined in the following way. First, we should find an
appropriate basic context Ω = Ω(G1, G2), see the very end of Section 5.2.3. As
was pointed out, it should be the basis of estimation of pure correlations between
two networks G1 and G2. So, the specific influence of concrete cognitive context C
should be eliminated, as much as possible. One can speculate that Ω corresponds to
the state of relaxation. For example, G1 and G2, performing the image recognition
are not excited by interaction with images.

Denote by n+|+ the number of cG2 firings during the periods of cG1 firing, i.e.,
the number of “matched firings.” Then

p+|+ = τn+|+, p−|+ = 1 − p+|+.

It is also clear how to find probabilities p±−. Thus the matrix of transition probabil-
ities is created in advance in the state of relaxation.11

The brain can now execute QLRA (and we assume that it really can do this) and
represent context C (e.g., an image C) by the amplitude ψC . This vector in Hilbert
space is the mental image of context C.

Of course, ψC provides only a rough projection of the neuronal image of the
context C. However, we cannot exclude that cognition (and especially conscious-
ness) is really based on such a QL-projecting of neuronal states. The brain makes
its decisions by operating with mental wave functions and not with frequencies of
firings. In cognitive literature, the problem of the neural code is widely discussed.
My conjecture is that the neural code is given by QLRA, transforming frequencies
of firings into probability amplitudes.

Denote by κ the average time for processing of QLRA, i.e., the time that is
required to produce ψC on the basis of probabilistic data, namely W (a, b, C) =
{pa

C (±), pb
C (±)}, collected on C. Intervals of time which are less than Δcogn = Δ+κ

11 By coupling our model with EEG studies of the brain, we can say that the latter state is char-
acterized by frequencies of α-waves in the brain. The states of active interaction with sufficiently
complex cognitive contexts are characterized by frequencies of β- and γ -waves. By (5.4) proba-
bilities pa

C (+) increase with increasing brain-wave frequencies. In contrast, transition probabilities
do not vary; they are rigidly coupled to the α-waves.
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has no cognitive meaning. So, the right cognitive scale is given by Δcogn. This scale
corresponds to the dynamics of the mental wave function, t �→ ψ(t).

We mention experimental evidence that a) cognition is not based on continuous-
time processes (a moment in “cognitive time” correlates with Δcogn ≈ 100 ms
of physical time); b) different psychological functions based on groups of neural
networks performing specific cognitive tasks operate on different scales of physical
time. In [173, 176] mental time was described mathematically by using p-adic hier-
archic trees; see also [157–160] for applications of p-adic numbers in mathematical
physics.

5.4 Quantum-like Consciousness

The brain is a huge information system that contains millions of patterns of neu-
ral activation. It could not “recognize” (or “feel”) all those patterns at each instant
of time t. Our fundamental hypothesis is that the brain is able to create the QL-
representations of neural patterns. At each instant of time t, the brain creates the
QL-representation of its mental context C based on two supplementary mental self-
observables a and b. Here a = (a1, ..., an) and b = (b1, ..., bn) can be very long
vectors; each of them consists of nonsupplementary dichotomous observables. The
reference self-observables can be chosen by the brain in different ways at different
instances of time. Such a change of the reference observables is known in cognitive
sciences as a change of the representation.

A mental context C in the a|b-representation is described by the mental wave
function ψC . We can speculate that the brain has the ability to feel this mental field,
a field of probability amplitudes.

In such a model the state of consciousness is represented by the mental wave
function ψC . It is a projection of neuronal mental activity. The latter forms sub-
consciousness. We can say that one has the classical subconsciousness and the
QL consciousness. We remark that this is a rather unusual viewpoint. Typically
the consciousness is considered as the classical part of the brain’s functioning and
subconsciousness as quantum.

The crucial point is that in my model the consciousness is created through
neglecting an essential volume of information contained in the subconsciousness.
Of course, it is not just a random loss of information. Information is selected through
the algorithm QLRA: a context C is projected onto ψC .

The (classical) mental state of subconsciousness evolves with time C → C(t).
This dynamics induces dynamics of the mental wave function ψ(t) = ψC(t) in com-
plex Hilbert space, “mental Schrödinger dynamics.”

Postulate QLR. The brain is able to create the QL representation of mental con-
texts, C → ψC , by using the algorithm (QLRA) based on the formula of total
probability with the interference term.
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5.5 The Brain as a Quantum-like Computer

We can speculate that the ability of the brain to create the QL representation of
mental contexts, see Postulate QLR, induces the functioning of the brain as a QL
computer.

Postulate QLC. The brain performs computation-thinking by using algorithms of
quantum computing in the complex Hilbert space of mental QL states.

We emphasize that in our approach the brain is not a quantum computer, but a
QL computer. On the one hand, a QL computer works totally in accordance with the
mathematical theory of quantum computations (so by using quantum algorithms).
On the other hand, it is not based on superposition of individual mental states. The
complex amplitude ψC representing a mental context C is a special probabilistic
representation of information states of the huge neuronal ensemble. In particular,
the brain is a macroscopic QL computer. Thus the QL parallelism (unlike conven-
tional quantum parallelism) has a natural realistic base. This is real parallelism in
the working of millions of neurons. The crucial point is the way in which this clas-
sical parallelism is projected onto dynamics of QL states. The QL brain is able to
solve NP-problems. But there is nothing mysterious in this ability: an exponen-
tially increasing number of operations is performed by involving an exponentially
increasing number of neurons.

5.6 Evolution of Mental Wave Function

We restrict our considerations to trigonometric mental contexts (QL contexts pro-
ducing the cos-interference). The mental wave function ψ(t) evolves in complex
Hilbert space H (space of probability amplitudes). The straightforward generaliza-
tion of quantum mechanics implies the linear Schrödinger equation, see (2.43):

i
dψ(t)

dt
= Ĥψ(t), ψ(0) = ψ0, (5.5)

where Ĥ : H → H is a self-adjoint operator in the Hilbert space of mental QL
states.

For example, let us consider a QL Hamiltonian, cf. (2.47):

Ĥ ≡ H (â, b̂) = b̂2

2
+ V (â), (5.6)

where V : X → R is a “mental potential” (e.g. a polynomial). We call Ĥ the oper-
ator of mental energy, cf. [161, 175, 53]. Here â, b̂ are two self-adjoint operators.
We recall that in the Växjö model the operator representation can be constructed for
any pair of supplementary observables, see Section 4.2, (4.18), (4.10).
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Denote by ψ j stationary mental QL states: Ĥψ j = μ jψ j . Then any mental QL
state ψ can be represented as a superposition of stationary states

ψ = k1ψ1 + k2ψ2, k j ∈ C, |k1|2 + |k2|2 = 1. (5.7)

One might speculate that the brain has the ability to feel the presence in the state
ψ ≡ ψC of superpositions (5.7) of stationary mental QL states. In such a case
superposition would be an element of mental reality. However, it seems not to be the
case. Suppose that ψ1 corresponds to zero mental energy, μ1 = 0. For example, such
a QL state can be interpreted as the state of depression. Let μ2 >> 0. For example,
such a QL state can be interpreted as the state of excitement. My internal mental
experience tells that I do not have a feeling of superposition of states of depression
and high excitement. If I am not in one of those stationary states, then I am just in a
new special mental QL state ψ and I have the feeling of this ψ (representing some
mental context C, i.e., ψ ≡ ψC ) and not superposition.12 Thus it seems that the
expansion (5.7) is just a purely mathematical feature of the model. Of course, the
brain uses the possibility to select a basis, e.g., the eigenvectors of the operator of
mental energy, and to perform self-measurements in this basis. However, as results
of measurements, it will feel just these eigenfunctions and not their superposition ψ.

5.6.1 Structure of a Set of Mental States

In QM a state (wave function) ψ is represented by a vector belonging to the unit
sphere S of a Hilbert space. In the two-dimensional case (corresponding to dichoto-
mous observables, e.g., ‘yes’ or ‘no’ answers) the set of quantum states can be
visualized by using the unit sphere in the three-dimensional real space R3, Bloch’s
sphere, see Section 4.3.

In our mental QL model, contexts producing trigonometric interference are rep-
resented by points in S. Suppose that there is given some set of cognitive contexts
P ⊂ Ctr, where the latter set consists of all trigonometric contexts13 corresponding
to the selected pair of two reference self-observables a and b. Let SP = J b|a(P),
where J b|a : C tr → H is the map corresponding to QLRA. Then the set of mental
states is described by the SP . There is no reason to suppose that SP coincides with
the S. It is a fundamental problem to describe the set of QL metal states SP for
various classes of cognitive systems.

We might speculate that SP depends essentially on classes of cognitive system.
So Shuman

P is not equal to Sleon
P . We can even speculate that in the process of evolution

12 We exclude abnormal behavior such as manic-depressive syndrome.
13 Of course, the brain also could operate with non-trigonometric contexts, e.g., hyperbolic or
even mixed hyper-trigonometric. We restrict modelling to trigonometric contexts to have a better
analogy with conventional QM.
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the set SP has been increasing and Shuman
P is the maximal set of mental states. It

might even occur that Shuman
P coincides with the Bloch sphere S.

5.6.2 Combining Neuronal Realism with Quantum-like Formalism

The main distinguishing feature of our QL approach to cognitive sciences is the
possibility of combining neuronal realism with mathematical formalism of quan-
tum mechanics (or its generalizations). In our model “quantum probabilistic waves”
(represented in the mathematical model by complex probability amplitudes) are
produced by ensembles of neurons. There is nothing mysterious in the wave-like
dynamics of mental information. Such a dynamics (which we use to simulate the
process of thinking) is the result of the ability of the brain to perform QL projection
of the ocean of neuronal information. At each instant of (mental) time the brain
selects two fundamental variables (selects a representation of the neuronal ocean14)
and creates the image of activity of the neuronal ocean given by a complex probabil-
ity amplitude (by applying QLRA producing a complex probability amplitude from
the statistical data).15 Our fundamental conjecture is that the brain operates (at least
on the highest level of mental functioning) with such QL images by using algorithms
of quantum computing. Thus one can call the brain a QL computer. Its functioning
is mathematically described by the conventional theory of quantum computing, but
physically it has nothing to do with the conventional quantum computer.

We can speculate that even collective cognitive systems (human societies, states,
nations, groups of animals, birds, insects) are able to create QL probabilistic rep-
resentations of information. One could say that such cognitive systems are driven
by probabilistic QL waves. Finally, we remark that one could not exclude that such
representations could be created by nonliving complex information systems. Our
approach opens the way to QL artificial intelligence.

14 Compare with Solaris by Stanislav Lem and especially with the corresponding film by Andrei
Tarkovsky.
15 Of course, it is assumed that the brain is able to collect this data. This collecting could not be
performed instantaneously. Therefore we speak about moments of mental time which correspond
to intervals of physical time.



Chapter 6
Experimental Tests of Quantum-like Behavior
of the Mind

Recently Conte et al. [66–68] performed an experiment (proposed by the author of
this book) suggesting that mental states may follow QL behavior. The conclusion
of the experiment was that some kind of equivalence seems to exist between QL
entities and corresponding cognitive entities. On this basis attempts can be made
to use the mathematical theory of quantum mechanics (and its generalizations) to
analyze the nature of cognitive entities. The aim of this chapter is to discuss some
basic features of our previous experiment and to give evidence on the application of
abstract quantum formalism to an analysis of cognition.

Another experiment to test QL probabilistic behavior in cognitive and social sci-
ences was recently designed by Haven and me with the help of psychologists Rakow
and Damjanovic (both at the Department of Psychology, University of Essex, UK)
[207]. In this chapter we formulate the conjecture we want to test and we describe
and discuss the proposed experiment.

Finally, in Section 6.6 we consider an interference-type experiment for the finan-
cial market. This experiment has not yet been performed. Moreover, it might need
an essential modification to be adequate for real trade at the financial market.

6.1 Theoretical Foundations of Experiment

Some aspects of quantum mechanics deal with the link between human cognition
and the physical world, so that indications of an ability of the theory to account
for the relationships of mental states with external event were present in its early
formulations. A correspondence on this subject took place in the years 1932–1958
between Pauli and Jung [155, 156].

Jung introduced the concept of synchronicity and Pauli devoted much consid-
eration to it, concluding that “it would be most satisfactory if physics and psy-
che could be seen as complementary aspects of the same reality”. The concept of
synchronicity states that a meaningful, although acausal, coincidence can occur of
mental states with objective external events. In the same way Bohr was significantly
influenced by the work of the psychologist James in the development of the principle
of complementarity. He was well informed on some theses discussed by James in
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his Principles of Psychology, and it was James’s use of complementarity in psy-
chology that possibly had a great influence on Bohr’s subsequent formulation of
this principle in quantum mechanics.

In this chapter I shall describe an experiment [66] designed in my work [180] to
test the QL behavior of mind by using our approach based on the difference between
classical and quantum formulas of total probability, see Section 5.2.2.

6.2 Gestalt Perception Theory

Let us explain the experiment in detail. It is well known that, starting in 1912,
Gestalt psychology moved a devastating attack against the structuralism formula-
tions of perception in psychology. The classical structuralism theory of perception
was based on a reductionistic and mechanistic conception that was assumed to regu-
late the mechanism of perception. There exists for any perception a set of elementary
defining features that are at the same time singly necessary and jointly sufficient
in order to characterize perception also in cases of more complex conditions. The
Gestalt approach introduced instead a holistic new approach, showing that the whole
perception behavior of complex images can never be reduced to the simple identi-
fication and sum of elementary defining features defined in the framework of our
experience.

During the 1920s and 1930s Gestalt psychology dominated in the study of per-
ception. Its aim was to identify the natural units of perception, explaining it in
a revised picture of the manner in which the nervous system works. Gestalt psy-
chology’s main contributions have provided some understanding of the elements of
perception through the systematic investigation of some fascinating features, such
as the causes of optical illusions, the manner in which the space around an object
is involved in the perception of the object itself, and, finally the manner in which
ambiguity plays a role in the identification of the basic laws of the perception. In
particular, Gestalt psychology also made important contributions to the question of
how to establish how it is that sometimes we see movements even though the object
we are looking at is not really moving. As we know, when we look at something
we never see just the thing we look at. We see it in relation to its surroundings
(underlying context). An object is seen against its background. In each case we
distinguish between the figure, the object or the shape, and the space surrounding it,
which we call background or ground, see Fig. 6.1 and Fig. 6.2.

The psychologist Rubin was the first to systematically investigate this phe-
nomenon, and he found that it was possible to identify any well-marked area of
the visual field as the figure, leaving the rest as the ground.

However, there are cases in which the figure and the ground may fluctuate and
one is forced to consider the dark part as the figure and the light part as the ground,
and vice versa, alternately.

Only a probabilistic answer may be given for a selected set of subjects that
will tend to respond on the basis of subjective and context-dependent factors. The



6.3 Gestalt-like Experiment for Quantum-like Behavior of the Mind 81

Fig. 6.1 (a) Ambiguity figure
1a. (b) Ambiguity figure 1b

(a) (b) 

Fig. 6.2 Ambiguity figure 2

importance of the figure–ground relationship lies in the fact that this early work
of Rubin represented the starting point from which Gestalt psychologists began to
explain what today are known as the organizing principles of perception. A number
of organizing or grouping principles emerged from such studies of ambiguous stim-
uli. Three identified principles may be expressed as similarity, closure and proxim-
ity. Gestalt psychologists attempted to extend their work also at a more physiological
level, postulating the existence of a strong connection between the sphere of the
experience and the physiology of the system, by admitting the well-known principle
of isomorphism. This principle establishes that the subjective experience of a human
being and the corresponding nervous event have substantially the same structure.

6.3 Gestalt-like Experiment for Quantum-like Behavior
of the Mind

In the experiment, we examined subjects by Tests a and b in order to test QL behav-
ior. For Tests a and b we used the ambiguity figures of Fig. 6.1, as they were widely
employed in Gestalt studies:
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a) Are these segments equal?
b) Are these circles equal?

Thus the a-test is based on the following cognitive task: look at Fig. 6.1a and
reply to question (a). The b-test is based on Fig. 6.1b.

The reasons for using such ambiguity tests here to analyze QL behavior in per-
ception may be summarized as it follows. First of all, the Gestalt approach was
based on the fundamental acknowledgement of the importance of the context in
the mechanism of perception. QL behavior formulates the same basic importance
and role of the context in the evolution of the considered mechanism. Finally, we
have seen that in ambiguity tests, the figure and the ground may fluctuate during the
mechanism of perception. Thus, consequently, a non-deterministic (this is to say a
QL) behavior should be involved.

Ninety-eight medical students of University of Bari (Italy) were enrolled in this
study, with about equal distribution of females and males, aged between 19 and 22
years, after giving their informed consent to participate in the experiment. In the
first experiment a group of 53 students was subjected in part to Test b (presentation
of only Test b) and in part to Tests a and b (presentation of Test a and soon after
presentation of Test b with prefixed time separation of about 2 s between the two
tests). The same procedure was employed in the second and third experiments for
groups of 24 and 21 students, respectively. All the students of each group were
submitted to Test b or to Test a followed by Test b. The ambiguity figures of Test
b or Test a followed by b appeared on a large screen for a time of only 3 s, and
simultaneously the students were asked to mark on a previously prepared personal
schedule their decision as to whether the figures were equal or not. Submission to
students of Test a followed soon after by Test b had the objective of evaluating
whether the perception of the first image (Test a) could alter the perception of the
subsequent image (Test b). All the experiments were computer assisted and in each
phase of the experimentation the following probabilities were calculated:

pb(+), pb(−), pa(+), pa(−),

p(b = +|a = +), p(b = −|a = +), p(b = +|a = −), p(b = −|a = −).

Here the role of context, say C, is played by the selection procedure of a sample for
the experiment. All probabilities depend on C.

A statistical analysis of the results was performed in order to ascertain whether
coefficients of supplementarity1 λβ are nonzero or zero in the case of our measure-
ments of mental observables as they were performed by us with Tests b, a and b|a.

The first experimentation gave the following results

1 We recall the coefficient of supplementarity λβ given by (4.3), see also (5.1).
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Test b : pb(+) = 0.6923; pb(−) = 0.3077,

Test a : pa(+) = 0.9259; pa(−) = 0.0741,

Test b|a : p(b = +|a = +) = 0.68; p(b = −|a = +) = 0.32, (6.1)

p(b = +|a = −) = 0.5; p(b = −|a = −) = 0.5.

The calculation of conditional probability gave the following result with regard to
pb(+):

pa(+)p(b = +|a = +) + pa(−)p(b = +|a = −) = 0.6666. (6.2)

The second experimentation gave the following results:

Test b : pb(+) = 0.5714; pb(−) = 0.4286,

Test a : pa(+) = 1.0000; pa(−) = 0.0000,

Test b|a : p(b = +|a = +) = 0.7000; p(b = −|a = +) = 0.3000, (6.3)

p(b = +|a = −) = 1.0000; p(b = −|a = −) = 0.0000.

The calculation of the conditional probability gave the following result with
regard to pb(+):

pa(+)p(b = +|a = +) + pa(−)p(b = +|a = −) = 0.7. (6.4)

Finally, the third experimentation gave the following results:

Test b : pb(+) = 0.4545; pb(−) = 0.5455,

Test a : pa(+) = 0.7000; pa(−) = 0.3000,

Test b|a : p(b = +|a = +) = 0.4286; p(b = −|a = +) = 0.5714; (6.5)

p(b = +|a = −) = 1.0000, p(b = −|a = −) = 0.0000.

The calculation of the conditional probability with regard to pb(+) gave the fol-
lowing result:

pa(+)p(b = +|a = +) + pa(−)p(b = +|a = −) = 0.6000. (6.6)

It is seen that the mean value ± SD of pb(+) resulted in pb(+) = 0.5727 ± 0.1189
with regard to Test b and calculated using (6.1), (6.3) and (6.5), while instead a
mean value of 0.6556 ± 0.0509 resulted for pb(+) when calculated with regard to
the Test b|a and thus using (6.2), (6.4) and (6.6). The two obtained mean values are
different and thus give evidence for the presence of QL behavior in measurements
of cognitive mental states as they were performed by testing mental observables by
Tests b, a and b|a. The use of Student’s t-test demonstrated that we had no more
than a 0.30 probability that the obtained differences between the two estimated
values of pb(+) by Test b and by Test b|a were produced by chance. Thus with
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probability 0.70 coefficients of supplementarity are nonzero and, hence, students
behave in a QL way (with respect to observables based on ambiguous figures). We
also found that these coefficients are bounded by 1, so behavior is trigonometric.

As the final step, we may proceed now to calculate cos θβ on the basis of the
coefficient of supplementarity λβ given by (4.3); see also (5.1). In the case of
our experimentation we obtained cos θ+ = −0.2285, θ+ = 1.8013 and cos θ− =
0.0438, θ− = 1.527, which are quite satisfactory phase results in order to admit QL
behavior for the investigated mental states.

On the basis of the illustrated results, we concluded that we had preliminary
evidence of the existence of QL behavior in the dynamics of some mental states.
Luckily, we were able to capture mental conditions of subjects in which the context
influenced decision in an essential way. We had equivalence between QL entities
and corresponding cognitive entities.

6.4 Analysis of Cognitive Entities

The performed experiment suggests a QL behavior of cognitive entities. A conse-
quence could be that cognitive entities as well as quantum entities exhibit a highly
contextual nature. As well as quantum entities being influenced by the usual phys-
ical act of measurement, cognitive entities are also influenced by the act of mea-
surement. In the case of cognitive entities, the measurement is characterized by the
cognitive interaction. According to the fact that the character of our knowledge is
noncomplete, it follows that the cognitive entities must have states with noncom-
plete character.

In the present chapter, on the basis of a behavioral similarity between cognitive
and QL entities, we have been able to make direct use of an abstract QL formalism
applied to cognitive entities. Moreover, we have been able to carry out accurate
QL development of the cognitive entity under consideration. The numerical results
obtained on the basis of the previous experiment give us the opportunity to delineate
basic features of cognitive entities not known in the past. Let us follow this applica-
tion in more detail. We can introduce the complex QL amplitude, which represents
the state of our cognitive entity expressed in relation to some selected mental observ-
ables. Let us admit that we selected the mental observable b, pertaining to a given
cognitive entity. Let us admit also that b, as previously fixed, could assume only
two possible values (b = +,−). Such a complex QL amplitude will be produced by
QLRA. The Born rule holds

|ψ(±)|2 = pb(±). (6.7)

The QLRA-produced complex QL amplitude will represent the state of our cogni-
tive entity in relation to the considered mental observable b.

The experiment we have performed gives us the opportunity to express in detail
a methodological indication of the way in which researchers could be able to apply
such a new development in future experiments. We will briefly reconsider the case of
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the experiment we have performed, showing how to write QL complex amplitudes
and thus to give a QL characterization of the state of the cognitive entity that was
employed in the experiment. Let us consider in detail what was confirmed to exist
in the case of our experimentation. As we indicated previously, we managed to
calculate two different values for cos θ (+) and cos θ (−), whose meaning is now
clear. In the case of our experimentations we obtained cos θ+ = −0.2285, θ+ =
1.8013 and cos θ− = 0.0438, θ− = 1.527, which are quite satisfactory phase results
in order to admit QL behavior for the investigated cognitive entity. As a final step,
we may now proceed by a detailed calculation of the QL model of the mental state
of the cognitive entity as characterized during the experimentation.

By using the obtained data, we can write a mental wave function ψ = ψC of
the mental state C of the group of students who participated in the experiment –
corresponding to a mental context denoted by the same symbol C. QLRA produces

ψ(β) =
√

P(a = +)P(b = β|a = +) + eiθ(β)
√

P(a = −)P(b = β|a = −). (6.8)

The ψ is a function from the range of values {+,−} of the mental observable
b to the field of complex numbers. Since b may assume only two values, such a
function can be represented by two-dimensional vectors with complex coordinates.
Our experimental data give

ψ(+) = √
0.8753 × 0.6029 + eiθ(+)

√
0.1247 × 0.5 ≈ 0.7193 + i0.2431 (6.9)

and

ψ(−) = √
0.8753 × 0.3971 + eiθ(−)

√
0.1247 × 0.5 ≈ 0.5999 + i0.2494. (6.10)

Thus, in conclusion, let us see how our development enables us to start from exper-
imental results obtained in the course of a programmed experiment to proceed to
writing explicitly the states of the involved cognitive entities as mathematical func-
tions. They are now in so explicit a form that we are able to analyze and to test them
under all the required experimental conditions.

Entering briefly the field of very technical notation, we may illustrate here that,
by performing the same experiment for every group of people having some special
mental state C (or in our terminology mental context), we can calculate the wave
function ψC giving a QL representation of the C . Thus there exists the map J ,
which maps mental states into QL wave functions. Such a mapping provides a
mathematical representation of mental functions. A mental state is too complex an
object for its complete mathematical description to be available, but we can formal-
ize mathematically some features of a mental state by using the QL representation.
We remark that any QL representation induces a huge reduction of information. In
particular, the wave function ψC calculated in our experiment gives a very rough
representation of the mental state C . The ψC contains just information on the ability
of the students who took part in the experiment to perceive contexts on the b- and
a-pictures. On the space of complex functions we introduce the structure of a Hilbert
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space H with the aid of the scalar product 〈φ,ψ〉 = φ(+)ψ̄(+) + φ(−)ψ̄(−). Thus
J maps the set of mental states into the H. The mental observable b can be repre-
sented by the multiplication operator in H : b̂ψ(β) = βψ(β); β = ±. The mean
value of the mental observable b in the mental state C can be calculated by using
the Hilbert space representation E[b|C] = 〈b̂ψC , ψC 〉. In our concrete experiment,
using experimental data, classically we have E[b|C] = pb(+) − pb(−) = 0.1454.

The same result gives our QL model

〈b̂ψC , ψC 〉 = |√0.8753 × 0.6029 + eiθ(+)
√

0.1247 × 0.5|2 (6.11)

− |√0.8753 × 0.3971 + eiθ(−)
√

0.1247 × 0.5|2 = 0.1454.

Thus we arrive at a complete quantitative representation of the basic features of the
cognitive entity that was engaged in our experimentation, allowing us, in particular,
to calculate mean values of mental observables. Such a way of applying an abstract
QL formalism to cognition could indicate interesting perspectives in the studies of
mental processes.

6.5 Description of Experiment on Image Recognition

The experiment considered in this section deals with image recognition [207]. The
images in the experiment concern pictures (only faces) of well-known British peo-
ple – be it royalty, film stars or any other individuals who are deemed to be well
known to the experiment participants. Immediately, at least three comments are in
order here. First, so as to make sure that we create no bias in proposing locally
based pictures, we must make sure that we sample the experiment participants from
a pool of students who have lived for a sizable period of time in the UK. There
exists a sizable pool of such experiment participants at the University of Essex.
Second, we need to remark that working only with students may create a bias too.
In similar experiments recorded in the psychology literature, a sample is taken from
a much wider age group. For instance, in the experiment on face recognition run
by Collishaw and Hole [65], the age group of experiment participants sampled is
18–50 years. Third, we only focus on showing faces of well-known people to the
experiment participants. Our choice of using faces stems from the literature in psy-
chology, which says that faces are the most distinctive key to a person’s identity [44].
The same literature [44] also investigates what types of information are derived from
looking at the features of a face. We do not expand on this here. In our experiment
two features of image recognition are being compared:

1) time of processing of the images;
2) the ability to recognize a nonmoving image I0 by analyzing a deformation I of it.

We denote the time of processing of images by the variable t. The ability to
recognize deformations of pictures is indicated by the variable r. The conjecture we
want to test is
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Conjecture: t and r are complementary (or, using our terminology, supplemen-
tary).

6.5.1 Preparation

We need to define the context (or, using quantum terminology, state) preparation.
The experimental context (state) C is given by a sequence of images I1, . . . , Im . The
experiment participants form a group G and each participant looks at the images
I1, . . . , Im for a sufficiently short time to “learn” the images. In Collishaw and
Hole’s [65] experiment on face recognition, the learning takes several seconds per
face. Also, we may want to be explicit about the size of G. For statistical infer-
ence we need of course a group size that is sufficient. In Collishaw and Hole’s
[65] experiment the size was 140 experiment participants (68 women and 72 men).
After learning, we split the group G randomly into two equal subgroups G1 and G2.
We made use of a sequence of face images of well-known UK-based people (this
sequence includes unknown people too). This sequence is now at the Department
of Psychology at the University of Essex. The image sequence (in excess of 30
pictures) is currently loaded on a computer terminal that experiment participants
will use to conduct the experiment.

6.5.2 First Experiment: Slight Deformations Versus Short
Exposure Time

A first experiment is performed with experiment participants from the first group
G1. Experiment participants are seated in front of a computer terminal. Pictures are
shown on the terminal which are slight deformations I ′

1, . . . , I ′
m of initial images

I1, . . . , Im . Those deformations can be obtained by various means:

i) blurring of the images;
ii) scrambling of the images;

iii) inversion of the images.

The psychology literature on the subject of face deformation is quite well estab-
lished, see [65] .

Experiment participants in group G1 are thus subjected to the images I ′
1, . . . , I ′

m
and also a few other images that are unknown (i.e. which have no relation to
I1, . . . , Im).2 Let us denote this set of all these images as IG1 .

The time window, i.e. the time of exposure which experiment participants are
allowed for viewing each of the slightly deformed pictures (including the unknown

2 In principle, we could proceed without such additional images. We add them to make the process
of recognition more complicated.
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pictures), in this first experiment is set to be very short. The width of the time win-
dow, w is a parameter of the experiment. The task the experiment participants have
to fulfill is to indicate whether they recognize the images in IG1 as modifications of
the initial images I1, . . . , Im . One of two buttons on the computer terminal is to be
pressed.

One button corresponds to the statement: “this image of IG1 corresponds to I j ”
and the other button corresponds to the statement: “this image of IG1 does not cor-
respond to any of I1, . . . , Im .” The images, part of the array of images loaned to
us by the Department of Psychology at the University of Essex, are of standardized
size. It is assumed that the experiment participants sit at a fixed distance from the
computer terminal. Before the experiment participants start the experiment, they
receive a practice set of pictures so they can get used to the terminal and to the
expected responses (recognize – do not recognize) they are supposed to give.

Let ω be an experiment participant from group IG1 performing this task. We set
t(ω) = 1 if ω was able to give the correct answers for x% of images in IG1 . And
t(ω) = 0 in the opposite case. Alternatively, we can use a measure that seems to
be used in psychology as an indicator of recognition accuracy. This is the so-called
d ′ score [240] and there is a range of values for d ′ indicating that an experiment
participant has done an almost error-less job in recognizing the pictures properly
(low 3 value of d ′) and a so-called ‘chance level performance’ [65] p. 899 (0 value
of d ′).

We now find probabilities P(t = 1|C) and P(t = 0|C) through counting num-
bers of experiment participants who gave answers t = 1 and t = 0, respectively.
We denote respective subgroups of experiment participants by G1(t = 1) and
G1(t = 0), respectively. The first group consists of experiment participants who
have the ability to perform image recognition very quickly and the second consists
of experiment participants who do not possess that ability. Note that the emphasis
in the first experiment is on the time variable.

6.5.3 Second Experiment: Essential Deformations Versus
Long Exposure Time

The second experiment is performed with experiment participants from the group
G2 as well as the subgroups G1(t = 1) and G1(t = 0) of the first group G1.

We create essential deformations I ′′
1 , . . . , I ′′

m of initial images I1, . . . , Im (i.e. we
increase the changes per face compared to the first experiment). As in the first exper-
iment, images are again added which are unknown (i.e. which have no relation to
I1, . . . , Im). We denote the set of essentially deformed images (with the ‘unknown’
images) IG2 . The task the experiment participants have to fulfill is identical to the
task described in the first experiment, i.e. the experiment participants in G2 have
to indicate whether they recognize the images in IG2 as modifications of the initial
images I1, . . . , Im . One of two buttons on the computer terminal is to be pressed.
One button corresponds to the statement: “this image of IG2 corresponds to I j ” and
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the other button corresponds to the statement: “this image of IG2 does not correspond
to any of I1, . . . , Im”. The time window in experiment 2 is long (i.e. longer than the
2.5–3 s of experiment 1). The width of the time window w is a parameter of the
experiment.

Let ω be an experiment participant performing this task. We set r (ω) = 1 if ω

was able to give the correct answers for x% of images in the series. And r (ω) = 0
in the opposite case. We now find probabilities P(r = 1|C) and P(r = 0|C) by
counting numbers of experiment participants in the group who gave answers r = 1
and r = 0, respectively. We denote respective subgroups of experiment participants
by G2(r = 1) and G2(r = 0), respectively. The first group consists of experiment
participants who have the ability to proceed with image recognition very carefully
and the second group consists of experiment participants without such an ability.
Note that the emphasis in the second experiment is on the carefulness of recognizing
the deformation of an image.

We also find probabilities P(r = β|t = α); α, β = 0, 1, by counting the number
of people in the group G1(t = α) who gave the answer r = β. After this we calculate
the coefficient of supplementarity λ and if it is less than unity, we find the angle θ

which gives us the measure of supplementarity of variables t and r. It would be
very interesting if λ were larger than one! In this case we would find experimental
evidence of new nonclassical probabilistic behavior (which is neither quantum nor
classical). Finally, we pay particular attention to the possibility that the coefficient
of supplementarity λ depends on the parameter w and the parameter of deformation.

Sub-additivity of probability in a psychology context has already been investi-
gated, albeit not from a quantum mechanical point of view, see [30, 243]. We may
come to similar conclusions through proposed studies of QL behavior of probabili-
ties in psychology and cognitive sciences: toward nonadditive probability from QL
interference of probabilities.

By using QLRA we can represent the experimental context C by a complex
probability amplitude ψC – the mental wave function. One should be careful with
interpretation of ψC . It should not be simply identified with its “material support”.
namely, the collection of images. The ψC also contains information about the ability
of students of the group G to recognize images in different regimes. If the matrix of
transition probabilities were double stochastic we would be able to construct the QL
representation of variables t and r by self-adjoint operators t̂, r̂ . We remark that t is
the time-type variable! It is well known that in conventional quantum mechanics one
cannot define the time operator. Of course, our QL time operator t̂ is not the time-
coordinate operator. This is the operator corresponding to some special temporal
characteristics of the brain.

Conclusion: The experiment proposed here aims to test complementarity (sup-
plementarity) between the two defined variables t and r. We have three parameters
to deal with in this experiment: the time width of exposure, the deformation and
the parameter λ, which depends on the former two parameters. Especially, in the
case λ > 1 we would have revealed, by this experiment, that there exists some
nonclassical probabilistic behavior – which is neither classical nor quantum.
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6.6 Interference Effect at the Financial Market?

A detailed review of applications of quantum mathematics to finances can be found
in Chapter 10.

The crash in 2008 demonstrated (once again) that the description of the finan-
cial market by current financial mathematics cannot be considered totally satisfac-
tory. We recall that nowadays financial mathematics is heavily based on the use of
random variables and stochastic processes, which are described by Kolmogorov’s
measure-theoretic model for probability (“classical probabilistic model”). I specu-
late that the present (2009) financial crisis is a sign (a kind of experiment to test
the validity of classical probability theory for the financial market) that the use of
this model in finances should be either totally rejected or at least completed. One
of the best candidates for a new probabilistic financial model is quantum probabil-
ity or its generalizations, that is, quantum-like (QL) models. Speculations that the
financial market may be nonclassical have been present in the scientific literature
for many years. Our aim is to move from the domain of speculation to rigorous
statistical arguments in favor of probabilistic nonclassicality of the financial market.
I design a corresponding statistical test that is based on violation of the formula of
total probability (FTP). The latter is basic in classical probability and its violation
would be a strong sign in favor of QL behavior of the market. We point out that the
experimental test to check a possibility of violation of FTP of the financial market
can be considered as adaptation to finances of the general statistical test proposed
in Section 5.2.2. A version has already been tested in cognitive science, see Section
6.3. It was shown that FTP (and hence classical probability theory) is violated in
some experiments on recognition of ambiguous pictures.

Our experiment may be criticized by dealers working at the real market. We
cannot exclude such a possibility. However, our experiment opens the door toward
design of similar, maybe more realistic, financial experiments. As a first step, one
may try to perform our experiment with students.

6.6.1 Supplementary (“complementary”) Stocks

We recall that two observables are supplementary if

P(b = β|a = α) > 0 (6.12)

for all α and β. The latter condition has no direct relation to QM. It can be used
in any domain of science. However, by using QLRA we can represent probabilities
by complex amplitudes and observables a and b by self-adjoint operators â and b̂.

Then (6.12) is equivalent to noncommutativity of these operators.
We recall the meaning of this condition. It can be equivalently written as

P(b = β|a = α) �= 1. (6.13)
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Thus it is impossible to determine a value b = β by fixing the value a = α. The
b-variable has some features that cannot be determined on the basis of features of
the a-variable. Thus b contains additional, or supplementary, information.Therefore
we call observables (from any domain of science) supplementary if (6.12) holds. As
was already pointed out, we may call them complementary as Bohr did in QM. But,
unlike Bohr, we do not emphasize mutual exclusivity of measurements. In principle,
supplementary observables, unlike complementary ones, can be measured simulta-
neously. However, supplementary observables are also mathematically represented
by noncommuting operators. We recall that our aim is to show the adequacy of the
mathematical apparatus of QM for the financial market. Thus, we need not borrow
even quantum ideology and philosophy.

We will consider supplementary stocks. Formally, one can determine whether
two stocks, say A and B, are supplementary by using the formal definition (6.12).
However, to do this, we should perform an experiment for a large ensemble of deal-
ers. If, finally, one observes that transition frequencies are close to zero, it will imply
that this pair of stocks is not useful for a future interference experiment. Therefore
it is much better to use financial intuition to determine whether two stocks can be
assumed supplementary.

6.6.2 Experiment Design

1) Select two supplementary stocks, say A and B.

2) Select of an ensemble Ω of dealers who are used to working with these two
stocks. Its size N should be large enough.

3) Select an interval δ giving the average time between two successive financial
operations.3

4) Define two observables: for a dealer ω ∈ Ω, a(ω) = +1 if he has bought
a packet of A-stocks during the period δ and a(ω) = −1 if he has not.4 The b-
observable is defined in the same way.

5) Starting with some initial instant of time, say t0, wait until t0 + δ. Then count
all dealers who have bought during this period some packet5 of A-stocks, i.e., all
elements ω ∈ Ω such that a = +1. Denote this number by na(+). We define
frequency probabilities

3 If during some period of time T (e.g., depending on frequency of operating, one day, a month, or
a year), a dealer made k operations at the financial market, then δ is equal to average of T/k with
respect to all dealers from the ensemble Ω selected for the experiment.
4 Even if his A-bid was present at the market, but did not match asked prices for this stock, then
a = −1 as if he did not submit any A-bid.
5 In the experiment under consideration the size of packet does not play any role. However, the
experiment can be designed in a more complicated way, by including the size of a packet. In this
way nonsignificant bids can be excluded from the game.
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pa(+) = na(+)/N , pa(−) = 1 − pa(+).

In the same way we find nb(+) – the number of dealers whose B-bids matched asks
at the market (during the same period [t0, t0+δ]) – and define frequency probabilities
pb(±).

6) On the basis of the previous a-measurement select from Ω sub-ensembles of
dealers Ωa

+ – those whose A-bids were realized during the period [t0, t0 + δ] – and
Ωa

− – those whose A-bids did not match any asked price for the A-stock or those
who did not bid anything for this stock. Denote the numbers of elements in these
ensembles by N a

+ and N a
−, respectively.

7) Wait until t0 + 2δ and after this count all dealers from Ωa
+ whose B-bids were

realized during the period [t0 + δ, t0 + 2δ]. These are elements ω ∈ Ωa
+ for whom

b(ω) = +1. Denote obtained number by n(+|+). We define frequency probabilities

p+|+ = n(+|+)/N a
+, p−|+ = 1 − p+|+.

They have the meaning of conditional probabilities. For example, p+|+ is the prob-
ability that a randomly chosen dealer first bought a packet of the A-stocks and then
a packet of the B-stocks.

In same way we define frequency probabilities

p+|− = n(+|−)/N a
−, p−|− = 1 − p+|−

by making the b-measurement for dealers belonging to the sub-ensemble Ωa
−.

8) Finally, define the interference coefficient

λβ = pb(β) − [pa(+)pβ|+ − pa(−)pβ|−]

2
√

pa(+)pβ|+ pa(−)pβ|−
, where β = ±. (6.14)

It gives a measure of deviation from the classical formula of total probability.
9) An empirical situation with λ �= 0 would yield evidence for QL behavior of

the financial market: interaction of dealers and stocks. In this case, starting with the
(experimentally calculated) coefficient of interference λ we can proceed either to
the conventional Hilbert space formalism (if this coefficient is bounded by 1) or to
so-called hyperbolic Hilbert space formalism (if this coefficient is larger than 1).



Chapter 7
Quantum-like Decision Making and Disjunction
Effect

In this chapter we offer the QL representation of the probabilistic data obtained
in two famous experiments in cognitive psychology: Shafir-Tversky [275] and
Tversky-Shafir [295]. These experiments demonstrated violation of Savage’s Sure
Thing Principle (STP) [271]). This violation was called by Shafir and Tversky the
disjunction effect, see also also Rapoport [266], Hofstadter [145, 146] and Croson
[71].

7.1 Sure Thing Principle, Disjunction Effect

STP can be formulated like this:
STP If you prefer prospect b+ to prospect b− if a possible future event A happens,

and you prefer prospect b+ still if future event A does not happen, then you should
prefer prospect b+ despite having no knowledge of whether or not event A will
happen.

Savage’s illustration refers to a person deciding whether or not to buy a certain
property shortly before a presidential election, the outcome of which could radically
affect the property market. “Seeing that he would buy in either event, he decides that
he should buy, even though he does not know which event will obtain”, [271], p. 21.

The crucial point is that the decision maker is assumed to be rational. Thus the
sure thing principle was used as one of foundations of rational decision making and
rationality in general. It plays an important role in economics in the framework of
Savage’s utility theory.1 It is well known that Savage’s axiomatics implies the use
of subjective probability. We recall that contextual probability in the Växjö model
can be interpreted in various ways, e.g., as frequency probability or subjective prob-
ability, see Sect. 3.1.5. Probabilities in the formula of total probability (FTP) and
its QL generalization, FTP with interference term (FTPQL), also can have different
interpretations.

If one uses FTP or FTPQL for decision making, see Sections 7.8 and 7.9 for
the latter, then probabilities (or at least a part of them) should be interpreted as

1 But, it is not a postulate. It is derived from Savage’s postulate P2, see [271].
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subjective. However, if one uses these formulas to study experimental data, as we
will do in Sect. 7.4, then probabilities are frequency or ensemble probabilities. In
the latter case FTP is used as a test of probabilistic compatibility (PI), see Section
2.2. The main consequence of this test is that violation of FTP implies that, for
decision making, cognitive systems (participating, e.g., in Shafir-Tversky [275] and
Tversky-Shafir [295] experiments) use not the classical FTP, but FTPQL.

How does one apply classical FTP for decision making? Consider a Kolmogoro-
vian probability space P = (Ω,F , P). Suppose there are given two mutually dis-
joint events A+ and A− = Ω \ A+. Decision function b is given by dichotomous
(for simplicity) random variable b : Ω �→ {+1,−1}. For example, somebody wants
to predict probability P(b = +1) by assigning the subjective probability to the
occurrence of A+ (and hence A−) and subjective probability to the decision b = +1
if A+ occurs as well as the probability to the same decision if A− occurs. Then by
FTP

P(b = +1) = P(A+)P(b = +1|A+) + P(A−)P(b = +1|A−). (7.1)

The crucial point of the use of FTP is that it is often easier to estimate probabilities
under some special conditions, in our example, alternatives A+ and A− = Ω \ A+.

Sometimes, e.g., in experiment [295], one need not elaborate subjective proba-
bilities for these alternatives, P(A+) and P(A−), see Section 7.4.2. They are given as
objective, e.g., frequency or ensemble probabilities. In this situation only subjective
probabilities under conditioning by these alternatives should be elaborated.

In other cases conditional probabilities can be found as frequency or ensemble
probabilities; only (subjective) probabilities P(A+) and P(A−) should be assigned
to alternatives.

Savage’s STP is a simple consequence of FTP. Suppose now that, e.g., for b =
+1, both conditional probabilities P(b = +1|A+) and P(b = +1|A−) are equal to
1. Then by (7.1)

P(b = +1) = P(b = +1|A+ ∪ A−) = P(A+) + P(A−) = 1. (7.2)

Probability P(b = +1) can be considered as conditional probability with respect
to disjunction of events A+ and A−, i.e.,

P(b = +1|A+ ∪ A−).

Experimentally observed [275, 295] violation of (7.2) was interpreted by Shafir and
Tversky as a new probabilistic effect induced by creation of disjunction A+ ∪ A− :
the influence of disjunction (to the decision b = +1) cannot be reduced to separate
influences of its counterparts. In cognitive psychology this situation is called the
disjunction effect.

As was discovered by professor of cognitive psychology Jerome Busemeyer, for
statistical data collected in Shafir-Tversky [275] and Tversky-Shafir [295] exper-
iments, the classical FTP is violated. This was a great discovery! Busemeyer
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speculated that decision makers in these experiments (students) may use rules to
make decisions that can be described by QM, see [48–50].

Inspired by the work of Busemeyer et al. [48], I applied the Växjö model to
describe these experiments [208, 206, 213, 209]. On the basis of experimental statis-
tical data I found the coefficients of interference. QLRA produced the corresponding
ψ-functions – mental wave functions for groups of students participating in experi-
ments.

My approach, which was called by Jerome Busemeyer the “constructive wave
function approach”, demonstrated that the experimental statistical data can be
produced by cognitive systems that use the wave function representation to make
decisions.2 Of course, it does not prove that students’ brains really operate with
probability amplitudes. Nevertheless, such a possibility of reconstructing an ampli-
tude on the basis of results of decision making strongly supports the hypothesis of
QL representation of information in the brain.

One important comment on the pioneer work by Busemeyer et al. [48– 51]
should be made. Although the nonclassical character of data from Shafir-Tversky
[275] and Tversky-Shafir [295] experiments was rightly pointed out, an attempt
to apply directly conventional QM formalism was not totally justified. Matrices of
b|a-contextual probabilities Pb|a corresponding to the mentioned experiments are
not doubly stochastic! So, generalizations of QM should be used. Such generaliza-
tions appear as Hilbert space images of contextual probabilistic models, see Chapter
4 (the very end of the introduction and Remark 4.1) and a lot of details in [214].

We apply our contextual approach to describe mentioned experiments in terms of
a variety of incompatible contexts that are involved, e.g., in the prisoner’s dilemma
(PD) or in more general games in which the disjunction effect can be found. We cou-
pled this effect with violation of the law of total probability. It is evidently violated
for the experimental data. Thus these data are nonclassical and the QL representation
of these data can be useful. Moreover, we can find a numerical measure of contextual
incompatibility or “nonclassicality” – the so-called coefficient of interference – as
well as represent contexts that are involved in PD by probability amplitudes. It is
done with the aid of QLRA, see Chapter 4.

Nowadays the use of quantum mechanics to study the disjunction effect and cog-
nitive decision making is very popular (including applications to economics and the
financial market). Besides the mentioned papers of Busemeyer and the coworkers
[48– 51] and me [208, 206, 213, 209], there are important contributions by Danilov
and Lambert-Mogiliansky [73–76] as well as Franco [109–114]. Finally, considera-
tions of this chapter are generalized in [137].

In the following few sections the QL processing of information by cognitive
systems is discussed, especially, QL decision making and both classical and QL
rationality and ethics. These sections are of general theoretical and even philo-
sophical character. See Sections 7.8 and 7.9 for a mathematical representation. The

2 At the moment the hypothesis of the QL brain is not much supported by other studies in cognitive
science and psychology. In any event we can create QL artificial intelligence.
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reader can jump directly to Sect. 7.4.1 – the starting point of contextual analysis of
Shafir-Tversky [275] and Tversky-Shafir [295] experiments.

7.2 Quantum-like Decision Making: General Discussion
and Postulates

The algorithm QLRA represents contextual probabilities by wave functions (or
normalized vectors of Hilbert space). We speculate that cognitive systems might
develop (in the process of mental evolution) an ability to apply QLRA and to create
QL representations of mental contexts. Thus, instead of operating with probabilities
and analyzing (even unconsciously) probabilities of various alternatives, the brain
works directly with mental wave functions (probabilistic amplitudes).

Such QL processing of information has the following advantages:

a) This is consistent processing of incomplete information.3 The crucial point is that
it is consistent information cutoff. Therefore, such processing does not induce
“information chaos”, especially under the assumption that all cognitive systems
use the same QL representation.

b) This is linear (vector space) processing of information. From the purely mathe-
matical viewpoint one can consider this procedure as a linearization of a prob-
abilistic representation of mental contexts. In particular, the mental wave func-
tion evolves linearly. Such an evolution is described by the mental Schrödinger
equation.4

We speculate that biological evolution induced the QL representation of infor-
mation long before the creation of quantum mechanics by Planck, Einstein, Bohr,
Heisenberg, de Broglie, Schrödinger, Dirac, and von Neumann.

If our hypothesis on QL processing of information by cognitive systems is cor-
rect, then it is natural to consider the QL process of decision making by cognitive
systems, in particular, human beings. We recall that decision making is the cogni-
tive process leading to the selection of a course of action among variations. Every
decision-making process produces a final choice.

We describe briefly our model of decision making. Any decision is made within
some mental context, say C, which is created in the brain on the basis of interac-
tions with external conditions and self-interaction of neural processes in the brain.
The brain represents a mental context by a mental wave function, probabilistic

3 It should be recalled that in this book we do not debate such a fundamental problem of QM as
its completeness. QM may or may not be complete. It is not important for us. We just apply QL
mathematics to the description of processing of information by cognitive systems. In this case it is
very natural to assume the existence of “hidden variables” on the neuronal level that are ignored in
the QL representation of information by the brain.
4 Thus, we surmise that the brain is able to linearize the mental world by the QL representation.
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(complex or even hyperbolic) amplitude ψC . This mental wave function evolves
linearly in the Hilbert state space: ψC (t). The “decision-making operation” is rep-
resented by an observable, say b, taking values corresponding to different choices
of action. This observable is represented by the brain as a linear operator (matrix)
b̂. Probabilities of possible alternative decisions are produced by Born’s rule for the
mental wave function ψC (T ), where T is the instant of time when the decision is
made

pb
C (β) = |〈ψC (T ), eb

β〉|2,

where, as always, eb
β is the eigenvector of b̂. Then the brain compares these prob-

abilities for all β ∈ Xb and it takes the decision b = β(max) corresponding to the
maximal probability, see Sect. 7.8.

In such QL representation, the cognitive system selects a course of action among
variations purely automatically (i.e., without applying the rule of reason – conven-
tional Boolean logic) on the basis of a random generator reproducing the probability
distribution of the QL observable b for the wave function ψC (T ). To calculate the
probability that an observable b takes a fixed value, the brain should find the scalar
product of the wave function ψC (T ) and the eigenvector corresponding to this value.
Finally, the absolute value of the result of this procedure should be squared.

Postulates of QL Decision Making:

a) The brain applies QLRA to create the QL representation of mental contexts: a
context C is mapped into its wave function ψC .

b) It generates dynamics of the mental wave function described by the Schrödinger
equation.

c) It represents “decision-making observables” by linear operators.5

d) It applies Born’s rule to find the probability distribution of a “decision-making
observable”.

e) Finally, the brain uses the classical decision-making scheme, see Sect. 7.8.

As has already been pointed out a few times, the QL representation is essentially
more general than the quantum representation: matrices of “transition probabilities”
need not be doubly stochastic. Moreover, some mental contexts might be repre-
sented not by complex probability amplitudes, but by hyperbolic (or even mixed
hyper-trigonometric) amplitudes.

5 Since a decision’s spectrum consists of discrete alternatives, it is enough to operate in finite
dimensional linear spaces, i.e., with matrices. In quantum mechanics observables are represented
by self-adjoint operators, i.e., by symmetric matrices. However, we talk not only about the conven-
tional quantum representation of cognitive entities, but about QL representation, which is based
on the contextual approach. Contextual probabilistic setups could violate not only the classical
probabilistic laws, for example, the law of total probability, but even the conventional quantum
laws. For example, it might so happen that a mental observable could not be represented by a
symmetric matrix.
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7.2.1 Superposition of Choices

We remark that QL decision making also includes the QL dynamics of the mental
state ψC . Of course, in the same way as in conventional quantum mechanics, by
making a concrete choice among alternatives, a cognitive system disturbs the QL
evolution, which is described, at least approximately, by Schrödinger’s equation.

One could say that “collapse of the mental wave function” occurs at the instant
of time t = T when a decision is made. Unlike adherents of the conventional
Copenhagen interpretation, I do not take collapse too seriously. In my model the ψC

function is simply a special linear space representation of probabilistic data about
the context C.

For example, let b take two values. These are two alternative decisions: +1, yes,
or −1, no. Then the mental wave function and the decision maker determine two
probabilities, p+ and p−. The concrete value, b = +1 or b = −1, is determined
by these probabilities. For example, let b take the value b = +1. At this moment
the Schrödinger evolution is interrupted. It starts again with a new mental wave
function, which is equal to the eigenvector corresponding to the value b = +1. In
accordance with quantum terminology we can say that during the period 0 ≤ t ≤ T
the brain’s mental state was in the superposition of two states b = +1 and b = −1.

Later we shall consider a more complicated process: a new context can be formed
and represented by its own mental wave function. Evolution may start with it as an
input, instead of with the eigenvector corresponding to the previous decision.

In general, a mental context C can be created not just for making the b-decision.
Decision tasks can come later. Suppose that the brain has a collection of decision
makers (self-observables) a, b, ...6 The mental wave function ψC (t) can be consid-
ered in the conventional quantum terminology as being in a superposition of all pos-
sible values for any observable. If the cognitive system should make the b-decision,
then the b-superposition is reduced to a single value, e.g. b = +1. Suppose that
operators (matrices) representing observables a and b do not commute. Then the
eigenvector of b for the value b = +1 need not be at the same time an eigenvector
for a. Hence, after taking the specific decision b = +1 the brain’s state is still a
superposition of all possible values for a.

Although we use the same terminology as in quantum mechanics, states superpo-
sition, its interpretation is totally different from the conventional one. Therefore, we
prefer to speak about QL superposition of mental states and not quantum superpo-
sition. The first is described in purely classical terms (even Schrödinger’s dynamics
can be easily simulated by a classical neural network). Therefore it can be exhibited
by macroscopic systems. The original quantum superposition is a “real superposi-
tion” of, e.g., states corresponding to two energy levels. It is not clear how it might
be realized for macroscopic systems.

6 It may be better to consider “activated decision makers”. The total number of possible decision
makers can be essentially larger. However, the majority of them are in the “sleeping mode.”
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7.2.2 Parallelism of Creation and Processing of Mental
Wave function

It is clear that the brain cannot operate for long with the same context C. A series
of Schrödinger’s evolutions and “state updating” after a decision making can be
interrupted when a new mental context C ′ is called forth by new external and internal
signals. This context is represented by its own mental wave function ψC ′ , which
evolves linearly in the Hilbert state space. The process of decision making and state
updating is then repeated starting with ψC ′ .

If the brain’s evolution is executed properly from the point of view of the
information-processing architecture, then it is natural to assume that creation of
a new context and its QL representation can go in parallel to processing, decision
making and state updating based on the previous context C.

We consider two domains of the brain, classical and QL. In principle, each
domain can be distributed through the brain. In the classical domain a probabilistic
image of a mental context C is created, see Sect. 5.3.2. Then these contextual prob-
abilities are represented by QLRA of the mental wave function. This mental wave
function is processed in the QL domain: Schrödinger’s evolution, measurement,
updating, and so on. The classical domain does not “sleep” meanwhile. It works
with a new context, say C ′. Its amplitude representation will be transmitted to the
QL domain later.

It is natural to suppose the existence of a control center, which plays the role
of a conductor for activities of these two domains. In particular, it should control
consistency of time scales for state preparation and decision making. On the one
hand, the brain saves a lot of computational resources by working only in the QL
domain. Here dynamics is linear – in contrast to essentially nonlinear dynamics in
the classical domain of the brain. However, new signals change mental context and
it should be updated in the classical domain.

7.2.3 Quantum-like Rationality

If one defines rational behavior on the basis of the law of total probability, then QL
behavior can be positively irrational, see Sect. 7.3 on rational behavior, PD and so
on. However, the only reason for such an interpretation is common application of the
law of total probability in modern statistics and decision making. Under the assump-
tion that cognitive systems make decisions by the QL decision-making procedure,
violation of “Boolean rationality” does not look surprising. One should be much
more surprised that modern science (including economics and finance) has been
able to proceed so far on the basis of assumptions of classical “Boolean rationality.”

Therefore, one should consider deviations from “Boolean rationality” not as evi-
dence of irrational behavior, but as evidence that cognitive systems are QL rational.

We point out another source of QL rationality. In addition to the advantages of
QL processing of incomplete information, see Sect. 7.2, let us mention the presence
of social pressure to proceed in the QL way. If a society consists of QL thinking
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cognitive systems, then any individual should use the QL reasoning to proceed
consistently with respect to other members of such a QL society. An individual
who tries to use a more detailed description of mental contexts and who attempts to
build a classical-like complete representation of contexts could make decisions that
would be, in fact, “more rational” (from the point of view of complete information
processing). However, such an individual might be rejected by the QL society.

7.2.4 Quantum-like Ethics

We remark that “nonconsequential reasoning” has been widely studied in cogni-
tive psychology, e.g., Rapoport [266], Hofstadter [145, 146], Tversky and Shafir
[295, 275], Croson [71]. However, from the QL point of view such reasoning is not
nonconsequential at all. It is consequential, but consequences are obtained through
QL processing of information.

For example, a preference for cooperative, ethical decisions in PD is conse-
quential from the viewpoint of QL probability. Hence, human ethics is, in fact, a
consequence of the QL representation of mental contexts. If we were involved in
purely classical probabilistic reasoning (based on classical Bayesian analysis), we
would not be able to demonstrate such a “nonconsequential behavior” as in PD.
We would behave as “cognitive automata” (like creations of AI). The essence of
human behavior is in the presence of the QL representation of probabilistic reality.
Likewise, cooperation may arise simply from the fact that mental wave function
produces (by Born’s rule) larger probabilities for cooperative actions.

In the absence of a decision-making task, the mental wave function evolves
according to Schrödinger’s equation. The generator of evolution is represented by
a special QL observable – “mental Hamiltonian” – describing a mental analog of
energy.

We suppose that human beings have such mental Hamiltonians that produce “eth-
ical wave functions”, ψC (T ), starting with a large variety of ψC . Such an “ethical
mental Hamiltonian” is formed still in childhood under the influence of the social
environment. We cannot exclude that some elements of the “ethical mental Hamil-
tonian” are encoded in the genome.

7.3 Rational Behavior, Prisoner’s Dilemma

In game theory, PD is a type of non-zero-sum game in which two players can coop-
erate or defect (i.e. betray the other player). In this game, as in all game theory, the
only concern of each individual player (prisoner) is maximizing his/her own payoff,
without any concern for the other player’s payoff. In the classic form of this game,
cooperating is strictly dominated by defecting, so that the only possible equilibrium
for the game is for both players to defect. In simpler terms, no matter what the other
player does, one player will always gain a greater payoff by playing defect. Since in
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any situation playing defect is more beneficial than cooperating, all rational players
will play defect.

The classical PD is as follows: Two suspects, A and B, are arrested by the police.
The police have insufficient evidence for a conviction, and, having separated the
prisoners, visit each of them offering the same deal: if one testifies for the prose-
cution against the other and the other remains silent, the betrayer goes free and the
silent accomplice receives the full 10-year sentence; if both stay silent, then both are
sentenced to six months in jail; if both betray, each receives a two-year sentence.

Each prisoner must make the choice of whether to betray the other or to remain
silent. However, neither prisoner knows for sure what choice the other prisoner
will make. So this dilemma poses the question: How should the prisoners act? The
dilemma arises when one assumes that both prisoners only care about minimizing
their own jail terms. Each prisoner has two options: to cooperate with his accomplice
and stay quiet, or to defect from their implied pact and betray his accomplice in
return for a lighter sentence. The outcome of each choice depends on the choice of
the accomplice, but each prisoner must choose without knowing what his accom-
plice has chosen to do. Reflecting on strategy, normally, it is crucial to predict what
others will do. This is not the case here. If you knew the other prisoner would stay
silent, your best move is to betray, as you then walk free instead of receiving the
minor sentence. If you knew the other prisoner would betray, your best move is
still to betray, as you receive a lesser sentence than by staying silent. Betraying is a
dominant strategy. The other prisoner reasons similarly, and therefore also chooses
to betray. Yet by both defecting they get a lower payoff than they would get by
staying silent. So rational, self-interested play results in each prisoner being worse
off than if they had stayed silent.

This is the principle of rational behavior, which is basic for rational choice
theory – the dominant theoretical paradigm in microeconomics. It is also cen-
tral in modern political science and is used by scholars in other disciplines such
as sociology. However, Shafir and Tversky found that players frequently behave
irrationally.

7.4 Contextual Analysis of Experiments with Disjunction Effect

7.4.1 Prisoner’s Dilemma

Each contextual model is based on a collection of contexts and a collection of
observables. The following mental contexts are involved in PD:

Context C , representing the situation when a player has no idea about the planned
action of the other player, “uncertainty context.”

Context C A
+, representing the situation when the B-player supposes that A will

stay silent (“cooperate”), and context C A
− , when B supposes that A will betray

(“compete”). Such a type of the PD experiment was performed by Croson [71].
Another version of the PD experiment (which is also realistic) was performed by
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Shafir and Tversky [275]. In their experiments the B-player was informed about
real actions of the A-player.7

We can also consider similar contexts C B
± .

We define dichotomous observables a and b corresponding to actions of players
A and B : a = + if A chooses to cooperate and a = − if A chooses to compete; b
values are defined in the same way.

A priori the law of total probability might be violated for PD, since player B is
not able to combine contexts. If those contexts were represented by subsets of the
so-called space of “elementary events”, as is done in classical probability theory,
then player B would be able to consider the conjunction of the contexts C and, e.g.,
C A

+ and to operate in the context C ∧ C A
+ (which would be represented by the set

C ∩C A
+). But the very situation of PD is such that one cannot expect contexts C and

C A
± to be peacefully combined. If player B obtains information about the planned

action of player A (or even if he just decides that A will play in a definite way, e.g.,
the context C A

+ will be realized), then the context C is simply destroyed. It could not
be combined with C A

+.

We can introduce the following contextual probabilities:

pb
C (±) ≡ P(b = ±|C) – probabilities for actions of B under the complex of

mental conditions C.

p±|+ ≡ P(b = ±|C A
+) and p±|− ≡ P(b = ±|C A

−) – probabilities for actions of
B under the complexes of mental conditions C A

+ and C A
−, respectively.

pa(±) ≡ P(a = ±|C) – prior probabilities that B assigns for actions of A under
the complex of mental conditions C.

As we pointed out, there is no prior reason for FTP to be true in this situation,
and experimental results of Shafir and Tversky [275] demonstrated that this equality
could be indeed violated. As was remarked, Shafir and Tversky did not proceed in
the mathematical framework, so they did not appeal to FTP. It was done significantly
later by Busemeyer.

Shafir and Tversky [275] performed the following PD-type experiment. Partici-
pants were told that they would play a two-person PD against another participant.
In fact, contrary to what they had been told, participants played against a prepro-
grammed strategy. All participants were told that they had been randomly assigned
to a bonus group, which meant that they would occasionally be given information
about the other player’s already-chosen move before they had to choose their own.
Throughout the experiment, each participant saw three versions of each PD: one
in which the other player’s move was unknown, one in which the other player had
cooperated and one in which the other player had defected.

7 It was a little bit more complicated, see coming description of their experiment.
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In the Shafir–Tversky [275] PD experiment we have

P(b = −|C) = 0.63 and hence P(b = +|C) = 0.37;

p−|− = 0.97, p+|− = 0.03; p−|+ = 0.84, p+|+ = 0.16.

As usually in probability theory, it is convenient to introduce the matrix of tran-
sition probabilities

Pb|a =
(

0.16 0.03

0.84 0.97

)
.

We point out that this matrix is stochastic (as it should be). But it is clear that the
matrix obtained by Shafir and Tversky is not doubly stochastic!

Croson [71] performed a similar experiment with one important difference.
Unlike in the original Shafir–Tversky experiment, participants were not informed
that they belong to a “bonus group” and that they would occasionally get informa-
tion about actions of their co-players (in advance), but it was proposed – in a subset
of games – to guess the actions of co-players. So, it was a game with elicited rather
than controlled beliefs. In such a PD experiment Croson obtained the following data:

P(b = −|C) = 0.225 and hence P(b = +|C) = 0.775; so the cooperation rate
was essentially higher than in the original Shafir–Tversky experiment.

p−|− = 0.68, p+|− = 0.32; p−|+ = 0.17, p+|+ = 0.83.

Hence, the matrix of transition probabilities is

Pb|a =
(

0.83 0.32

0.17 0.68

)
.

We see an essential deviation from the original Shafir–Tversky experiment. It is
especially interesting that both experiments were based on the same payoff matrix:

(
75, 75 25, 85

85, 25 30, 30

)
.

Croson’s experiment is very important in our mental contextual model. A mental
context can be changed not only by a “real change of the world”, but even by the
brain’s self-measurement. Even by imaging something the brain changes its state of
mind, mental context.

In [71] an asymmetric version of PD was performed. Here the payoff matrix had
the form

(
85, 65 35, 75

95, 15 40, 20

)
.

Here:
P(b = −|C) = 0.375 and hence P(b = +|C) = 0.625; so the cooperation rate

was essentially higher than in the original Shafir–Tversky experiment.
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p−|− = 0.65, p+|− = 0.35; p−|+ = 0.47, p+|+ = 0.53.

Hence, the matrix of b|a-contextual probabilities is

Pb|a =
(

0.53 0.325

0.47 0.65

)
.

7.4.2 Gambling Experiment

Tversky and Shafir [295] proposed to test the disjunction effect for the following
gambling experiment. In this experiment, you are presented with two possible plays
of a gamble that is equally likely to win 200 USD or lose 100 USD. You are
instructed that the first play has completed, and now you are faced with the pos-
sibility of another play.

Here, a gambling device, e.g., roulette, plays the role of A; B is a real player,
his actions are b = +, to play the second game, b = −, not to. The context C
corresponds here to the situation when the result of the first play is unknown to
B; the contexts C A

± correspond to the situations when B is informed of the results
a = ± of the first play in the gamble.

Tversky–Shafir gambling experiment, version with the same group of students.

The data given here are from the experiment which was done for the same group
of students, but under different contexts C A

+ (won-context), C A
− (lost-context), C

(uncertainty context). There was ten days pause between successive experiments.
From Tversky and Shafir [295] we have

P(b = +|C) = 0.36 and hence P(b = −|C) = 0.64;

p+|− = 0.59, p−|− = 0.41; p+|+ = 0.69, p−|+ = 0.31.

We get the following matrix of transition probabilities

P =
(

0.69 0.59

0.31 0.41

)
.

This matrix of transition probabilities is not doubly stochastic either, cf. with previ-
ously considered PD-type experiments.

Tversky–Shafir gambling experiment, between subject design.

In the same paper [295] Tversky and Shafir modified this gambling experi-
ment. Three different populations, one for each context, were involved in the b-
measurement. The data are

P(b = +|C) = 0.38 and hence P(b = −|C) = 0.62;

p+|− = 0.57, p−|− = 0.43; p+|+ = 0.69, p−|+ = 0.31.
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We get the following matrix of transition probabilities:

P =
(

0.69 0.57

0.31 0.43

)
.

7.4.3 Exam’s Result and Hawaii Experiment

Tversky and Shafir considered the following psychological test demonstrating the
disjunction effect. They showed that significantly more students report that they
would purchase a nonrefundable Hawaii vacation if they knew that they had passed
or failed an important exam than report they would purchase if they did not know
the outcome of the exam.

The latter context is denoted by C and the “passed”-context by Ca
+ and “failed”-

context by Ca
−.

Here

P(b = +|C) = 0.32 and hence P(b = |C) = 0.68;

p+|+ = 0.54, p+|− = 0.57; p−|+ = 0.46, p−|− = 0.43; and

Pb|a =
(

0.54 0.57

0.46 0.43

)
.

It is again not doubly stochastic.

7.5 Reason-Based Choice and Its Quantum-like Interpretation

Shafir and Tversky claimed that the disjunction effect is caused by the decision pro-
cess of reason-based choice. Participants, instead of considering the consequences
of their decisions, focus on reason to choose one thing versus another.

Go back to the example with Hawaii. If the exam were passed there would be a
good reason to go to Hawaii – to celebrate. If the exam were failed, there would also
be a good reason to go to Hawaii – to console oneself. However, before knowing the
outcome of the exam, there is no reason to go to Hawaii; thus participants choose
not to go. This dependence on reasons for choice leads to violation of STP.

In PD-type games, the information (real as well as obtained by imagination)
on plans of the A-player induces reasons (for the B-player) that are absent in the
absence of this information.

What does “reason-based choice” mean in the QL framework?
In our model the “state of mind” (representation of context C) is given by the

vector ψ ≡ ψC in Hilbert space. The process of thinking about the coming result
of the exam can be interpreted as the process of measurement; we call the cor-
responding mental observable a. By obtaining a result a = α, i.e., a = +, the
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brain finishes its self-measurement. It implies the creation a new context, namely,
the selection context Cα, or (using the state formalism) state reduction: from ψC to
the eigenvector ea

α ≡ ψCα
of the operator â representing the observable a, cf. Sect.

5.2.1. It is clear that statistics of results of measurements for observable b, b = +,

to go to Hawaii, and b = −, not, is different for the state ψ and the state ea
α.

Thus by looking for reasons the brain performs a self-measurement including the
state reduction. The latter evidently changes statistics.

7.6 Coefficients of Interference and Quantum-like
Representation

1a) Tversky–Shafir gambling experiment, Sect. 7.4.2; version with the same
group of students. Here A-probabilities are equal: they were produced simply by
a random generator imitating the first play of the gamble. Simple arithmetic calcu-
lations give

δ+ = −0.28, λ+ = −0.44.

The coefficient of interference is bounded by 1. Thus, the probabilistic phase θ+ =
2.03. We recall that δ+ + δ− = 0, see (3.16). So,

δ− = 0.28, λ− = 0.79.

This is again bounded by 1. Thus, the probabilistic phase θ− = 0.66. Since both
coefficients of interference are bounded by 1, context C (uncertainty) is trigonomet-
ric, see Sect. 4.2: C ∈ Ctr. Such behavior is typical for quantum systems. QLRA
produces the complex probability amplitude – the mental wave function (in fact,
two-dimensional vector)

ψ(+) ≈ 0.59 + e2.03i 0.54; ψ(−) ≈ 0.39 + e0.79i 0.45. (7.3)

1b) Tversky–Shafir gambling experiment, Sect. 7.4.2; between subject design.
Here also A-probabilities are equal. Thus

δ+ = −0.25, λ+ = −0.4, θ+ = 1.98;

δ− = 0.25, λ− = 0.69, θ− = 0.81.

Thus (as one can expect) the uncertainty-context is again trigonometric. QLRA pro-
duces the complex vector with coordinates

ψ(+) ≈ 0.59 + e1.98i 0.53; ψ(−) ≈ 0.39 + e0.81i 0.46. (7.4)

As one can expect, the two complex vectors, (7.3) and (7.4), do not differ much.
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2) Shafir–Tversky PD experiment, Sect. 7.4.1. In this PD experiment player
B was given the information that player A had chosen to cooperate and to com-
pete an equal number of times. Thus here A-probabilities are also equal. Here
λ− = −0.31 and hence the phase θ− = 1.89. However, λ+ = 3.98. Thus inter-
ference is very high. It exceeds the possible range of the conventional trigonometric
interference. This is the case of hyperbolic interference! Here the hyperbolic phase
θ+ = arccosh (3.98) = 2.06.

This is the first example of hyperbolic interference! It shows that students are
even more nonclassical than electrons and photons! It is one more sign that men-
tal observables should be described by QL formalism and not by the conventional
quantum one.

The B-brain (if it is really QL) represents the uncertainty context C in the PD
game by the following hyper-trigonometric amplitude:

ψ(+) ≈ 0.28 + e2.06 j 0.12; ψ(−) ≈ 0.65 + e1.89i 0.7.

3) Tversky–Shafir Hawaii experiment, Sect. 7.4.3. Here the A-probabilities are
equal as well. We have

δ+ = 0.17, λ+ = 0.3, θ+ = 1.3;

δ− = −0.17, λ− = −0.37, θ− = 2.

7.7 Non-double Stochasticity of Matrices of Transition
Probabilities in Cognitive Psychology

We have seen that matrices of transition probabilities (b|a-contextual probabilities)
constructed from experimental data of the Tversky–Shafir Game and Shafir–Tversky
PD experiments are not doubly stochastic. The same is valid for the matrix obtained
in the Bari experiment, Conte et al. [66]. On the other hand, matrices of transi-
tion probabilities that should be generated by conventional quantum mechanics in
the two-dimensional Hilbert space are always doubly stochastic, see von Neumann
[301], see also Sect. 2.3, Postulate 2.

We can present two possible explanations of this “non-doubly stochasticity para-
dox”:

a) The statistics of these experiments are neither classical nor quantum (i.e., neither
the Kolmogorov measure-theoretic model nor the conventional quantum model
with self-adjoint operators could describe these statistics).

b) Observables corresponding to real and possible actions are not complete. From
the viewpoint of quantum mechanics this means that they should be represented
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not in the two-dimensional (mental qubit) Hilbert space, but in Hilbert space of
a higher dimension.8

Personally, I would choose explanation (a), and not merely because it is my
own. It seems that actions of A and B in the PD could not be naturally split into
sub-actions. Thus the “action-observables” could not be naturally represented by
operators with degenerate spectra.

Of course, there are many brain-variables that are involved in PD decision mak-
ing. However, the essence of creation of a QL representation is a selection of the
most important variables. Other variables should not be included in the QL repre-
sentation chosen for a certain problem.

Nevertheless, we cannot completely ignore the incompleteness conjecture of
Busemeyer and Lambert-Mogiliansky. Here, we would immediately meet a really
terrible problem: “How can we find the real dimension of the quantum (or QL) state
space?” So, if this dimension is not determined by values of complementary observ-
ables a and b, then we should be able to find an answer to the question: “Which are
the additional mental observables that would complete the model?” One should find
complete families of observables ua

1, ..., ua
m and ub

1, ..., ub
m, compatible with a and

b, respectively.
We remark that in the case of the hyperbolic interference we would not be able to

solve the “non-double stochasticity paradox” even by going to higher dimensions.
My conjecture (similar ideas were also proposed by Luigi Accardi and Dierk

Aerts, at least in our conversations and our e-mail exchange) is that the laws of
classical probability theory can be violated in cognitive sciences, psychology, social
sciences and economics. However, nonclassical statistical data are not covered com-
pletely by the conventional quantum model.

My personal explanation is based on the evidence that violation of the formula of
total probability does not mean that we should obtain precisely the formula of total
probability with the interference term that is derived in the conventional quantum
formalism.

Nevertheless, the conventional quantum formalism can be used as the simplest
nonclassical model for mental and social modelling.

7.8 Decision Making

As we have seen, if for some context C, probability distributions for supplemen-
tary observables a and b are known, then the complex probability amplitude ψC

representing C can be reconstructed by using QLRA. This was the problem of

8 This latter possibility was pointed out to me by Jerome Busemeyer and Ariane Lambert-
Mogiliansky during the workshop “Can quantum formalism be applied in psychology and econ-
omy?” (Int. Center for Math. Modeling in Physics and Cognitive Sciences, University of Växjö,
Sweden; 17–18 September, 2007).
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representation of probabilistic data by complex probability amplitude, see Sections
4.2 and 4.3. My conjecture is that the brain developed the ability for such a QL
representation of probabilistic data. In such a QL model the brain uses probabil-
ity amplitudes for decision-making. We restrict our considerations to trigonometric
contexts, so probability distributions are complex-valued.

Consider the following situation. A (mental) context C is given. The brain makes
a decision about the b-attribute, given by, e.g., b = β1, β2, – so choosing between
b = β1 and b = β2. The crucial point is that it is assumed that another attribute, say
a(= α1, α2), which is supplementary to b, is involved in the process of decision-
making. Since variables a and b are supplementary (under the context C), interfer-
ence angles θ = (θβ1 , θβ2 ) should be considered, see (4.6). In the PD this a-attribute
is related to actions of another prisoner. In the Tversky–Shafir gambling experiment
it is simply the (classical) random generator producing wins and losses. The lat-
ter example shows that “quantumness” (qualitatively encoded by the interference
angles) is not a feature of a (in fact neither of b), but it appears via interrelation of
a, b and the context C. Our scheme of QL decision-making is based on the assump-
tions that there are given (created by the brain of the basis of previous experience)

a) b|a-contextual (“transition”) probabilities pβ|α;
b) the probability distribution of the a : pa

C (α);
c) the probability distribution of the phase angles θ = (θβ1 , θβ2 ) : pC (θ ).

Thus all these distributions are given a priori. One should not always identify
prior probabilities with “subjective probabilities.” The previous frequency experi-
ence plays an important role in determination of these probability distributions.

The brain uses the formula of total probability with the interference term to find
the b-probabilities. Under the assumption that the interference angle is θβ, it pro-
duces the probabilities

pb
C (β|θ ) =

∑

α

pa
C (α)pβ|α + 2 cos θβ

√
pa

C (α1)pβ|α1 pa
C (α2)pβ|α2 . (7.5)

The crucial point of the decision-making scheme is their interpretation:
For each β, pb

C (β|θ ) is the probability that under the condition that the b|a-
interference angle is θβ (for the context C) the decision b = β is “right”, i.e., it
would produce some form of reward.

By the (classical) Bayes’ formula the brain finds the joint probability distribution

pC (β, θ ) = pC (θ )
(∑

α

pa
C (α)pβ|α + 2 cos θβ

√
pa

C (α1)pβ|α1 pa
C (α2)pβ|α2

)
(7.6)

and finally the total b-probabilities

p̄b
C (β) =

∫
dθ pC (θ ) pb

C (β|θ ). (7.7)
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As the extension of the interpretation of conditional probabilities, the probability
p̄b

C (β) is considered as the probability that the decision b = β is right.
In the present decision-making scheme the brain makes the b = β1-decision if

p̄b
C (β1) is larger than p̄b

C (β2) and vice versa, cf. [148], p. 54. The qualitative mean-
ing of “larger” is determined depending on the cognitive system and may be the
context C.

We should also mention another QL decision-making scheme. Comparing the
probabilities p̄b

C (β1) and p̄b
C (β2) is an additional act of mental processing. It needs

special neuronal and time resources. The processing might be especially compli-
cated when these probabilities do not differ essentially. In such a situation a QL
cognitive system might choose the regime of “automatic probabilistic decision-
making”, namely, by just using a (classical) random generator producing decisions
β1 and β2 with the probabilities p̄b

C (β1) and p̄b
C (β2)

Remark 7.1 (Comparison with classical decision making) We remark that a cogni-
tive system τCL that uses the classical probabilistic processing of information can
apply the conventional formula of total probability to predict the b-probabilities on
the basis of “transition probabilities” pβ|α and a-probabilities pa

C (α). Thus one can
consider the proposed QL scheme as simply introduction of an additional – interfer-
ence – parameter θ and modification of the formula of total probability. The main
source of such a modification of the conventional statistical considerations is the
impossibility of combining the context C with the selection contexts Cα j and hence
to get the probabilities P(b = β|CCα j ). As we have seen, a QL cognitive system
τQL cannot proceed in the same way. The formula of total probability with the inter-
ference term contains not only the transition probabilities and the a-probabilities,
but also phases, and the latter are unknown. Thus even by choosing e.g. prior prob-
abilities pa

C (α) (under the condition that the transition probabilities were obtained
from the previous frequency experience), the τQL could not predict b-probabilities.
The distribution pC (θ ) of the interference parameter θ also should be created on the
basis of the previous experience or chosen by subjective reasons.

By using QLRA the cognitive system τQL can construct for each θ = (θβ1 , θβ2 )
the complex probability amplitude ψC,θ (β). Then the b-probabilities can be repre-
sented by using Born’s rule:

p̄b
C (β) =

∫
dθ pC (θ ) |ψC,θ (β)|2. (7.8)

7.9 Bayesian Updating of Mental State Distribution

Thus by our model the brain of τQL proceeds by using a mixture of classical and
quantum probabilities. The whole Bayesian scheme is purely classical, “quantum-
ness” appears in (7.8) only via Born’s rule. In fact, this rule is a consequence of (7.5).

However, as always, there arises the problem of the choice of prior probability
distributions. Since the transition probabilities and the a-probabilities are present
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even in the classical Bayesian framework, only the phase distribution pC (θ ) makes
a new (QL) contribution. A QL cognitive system τQL should itself learn to choose
pC (θ ) on the basis of the previous experience of the b|a decision-making under the
context C. Such learning can be performed by the (conventional) Bayesian updating
procedure.

By combining Bayes’ and Born’s formulas, we obtain

pC (θ |β) = pC (β, θ )

p̄b
C (β)

= pC (θ )|ψC,θ (β)|2∫
dθpC (θ )|ψC,θ (β)|2 . (7.9)

By following the Bayesian scheme τQL would like to maximize the probability
pC (θ |β), i.e., to construct a map m : Xb → Θ, m(β) = θmax(β). Since the denomi-
nator in (7.9) does not depend on θ, this problem is reduced to maximization of the
joint probability density pC (β, θ ).

Suppose now that under the context C the cognitive system τQL made the decision
b = β and this decision was successful (so τQL got some form of reward). Then
the τQL would update the distribution pC (θ ) by maximizing pC (β, θ ). To simplify
considerations and to extract the main QL factor, we assume that the transition prob-
abilities as well as the a-probabilities are fixed. So, optimization is considered only
with respect to the interference angles θ.

We recall, see (4.13), that in the case of the doubly stochastic matrix of transition
probabilities θβ1 = θβ2 + π and hence we can consider the one-dimensional phase
parameter θ.

Example 7.1 (Discrete distribution of phases) Some context C is chosen. Suppose
that the transition probabilities as well as the a-probabilities are equal to 1/2. Here
the formula of total probability with the interference term gives

pC (β1|θ ) = cos2 θ/2; pC (β2, θ ) = sin2 θ/2.

We remark that these probabilities coincide with polarization (or spin 1/2) prob-
abilities obtained in QM, see e.g. [148]. It should be emphasized that this is
really a simple coincidence of mathematical formulas. Unlike, e.g., Marley and
Hornstein [238], we do not consider physical quantum systems. We now consider
the simplest nontrivial case of the parametric set consisting of two points, e.g.
Θ = {θ1 = π/2, θ2 = π}. So, this cognitive system reduced (on the basis of some
information) phases under the context C to two possible angles. Hence, p̄C (β1) =
1/2(cos2 π/4 + cos2 π/2) = 1/4, p̄C (β2) = 1/2(sin2 π/4 + sin2 π/2) = 3/4.

Thus under the assumption that all phases in Θ are equally possible, this cognitive
system τQL gets that p̄C (β2) is essentially larger than p̄C (β1). Hence, τQL makes
the decision b = β2. If the result of this decision was positive (i.e. some form
of reward was obtained), τQL would like to update the state distribution. Since
pC (β2, π/2) = 1/4 and pC (β2, π/2) = 1/2, the cognitive system will put (in future
decision-making) more weight on θ2 = π, e.g. the updated distribution could be
pC (π/2) = 1/3, pC (π ) = 2/3.
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Example 7.2 (Continuous distribution of phases) Suppose that all transition prob-
abilities are equal. Let us consider the uniform distribution of phases on Θ =
[0, 2π ) : dpC (θ ) = 1/2πdθ. Here pC (β1, θ ) = 1/2π cos2 θ/2; pC (β2, θ ) =
1/2π sin2 θ/2. Hence, p̄C (β1) = p̄C (β2) = 1/2. Thus a definite decision cannot
be made.

Example 7.3 Suppose that all transition probabilities are equal. Let us consider
the uniform distribution of phases on Θ = [0, π/2) : dpC (θ ) = 2/πdθ. Here
pC (β1, θ ) = 2/π cos2 θ/2; pC (β2, θ ) = 2/π sin2 θ/2. Hence, p̄C (β1) = 1/π +
1/2, p̄C (β2) = 1/2 − 1/π. Thus the b = β1 decision is preferred. For this deci-
sion the maximum is approached for θ = 0. Therefore this cognitive system would
update pC (θ ) by concentrating it at the point θ = 0.

7.10 Mixed State Representation

We remark that the former Bayesian considerations can be mathematically repre-
sented by using mixed quantum states. Let us consider the density matrix

ρC ≡
∫

Θ

dθp(θ ) ρC,θ ,

ρC,θ ≡ ψC,θ ⊗ ψC,θ .

We obtain the representation

p̄b
C (β) = Tr ρC β̂, (7.10)

where β̂ is the orthogonal projector corresponding to the eigenvalue b = β. Thus
the quantity

p̄b
C (β1)

p̄b
C (β2)

= Tr ρC β̂1

Tr ρC β̂2
(7.11)

is used in QL decision-making.

7.11 Comparison with Standard Quantum Decision-Making
Theory

In this section we compare our approach with standard quantum decision-making
theory, see e.g. [141, 148, 147, 238] (and references therein).

a) Interpretation. The crucial difference is that our formalism is not about really
quantum physical systems, but about QL systems. Thus we do not need quantum
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sources of randomness, e.g. electrons or photons, to perform our QL decision-
making. Moreover, the essence of QL behavior is not consideration of a special
class of systems, but of a special class of contexts or, to be more precise: interre-
lation between contexts and observables.

b) Scheme of decision-making. We consider a specific scheme (motivated by PD)
involving two supplementary (“incompatible”) observables a and b. Moreover,
in general one of them, namely a, is a generalized quantum observable, i.e., it
cannot be represented by a self-adjoint operator (symmetric matrix).

c) Mathematics. We consider a specific parametrization of a prior quantum state,
namely, by the interference angle θ.

d) Application. We apply our model to modeling of the brain’s functioning as a
macroscopic QL system or, to be more precise: a macroscopic system performing
specific interconnections between contexts and observables (inducing nontrivial
interference).

7.12 Bayes Risk

As usual in quantum decision-making, we consider Bayes risk corresponding to the
deviation function Wθ (β), see [148], p. 46:

Rb
C ≡

∫

Θ

dp(θ )
∑

β

Wθ (β)pb
C (β|θ ) =

∫

Θ

dp(θ )
∑

β

Wθ (β) |ψC,θ (β)|2 = (7.12)

∫

Θ

dp(θ )
∑

β

Wθ (β) TrρC,θ β̂.

Typically in quantum decision theory the problem of finding Bayes decision rule
is considered, e.g. [148], p. 46–50. However, we are not interested in this problem,
since the decision-making operator b̂ is considered as given.9

In our model the brain is interested in minimizing Bayes risk for the fixed observ-
able b by variation of the prior distribution of interference phases.

We come back to Example 7.1. Now we do not fix the distribution of phases on
Θ = {θ1 = π/2, θ2 = π}. Here p = p(θ1) and 1 − p = p(θ2) are parameters of
the model. Suppose that the deviation function is Wθ j (βi ) = δi j . Thus Bayes risk
is Rb

C = p pb
C (β1|θ1) + (1 − p) pb

C (β2|θ2) = p cos2 θ1/2 + (1 − p) sin2 θ2/2 =
p/2 + (1 − p) = 1 − p/2. Thus Bayes risk is minimal for p = 1. Hence, the brain
would modify the prior (mixed) mental state into the (pure) mental state ψC,π/2.

9 Of course, it could also be modified in the process of the brain’s functioning, but we do not
consider this problem in the present book.
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7.13 Conclusion

Violation of the law of total probability can be used to explain the disjunction effect.
The QL representation can be applied to describe this effect. The essence of our
approach is the introduction of a numerical measure of disjunction, the so-called
interference coefficient. In particular, we found the interference coefficients for
statistical data from Shafir–Tversky [275], Tversky–Shafir [295] and Croson [71]
experiments coupled to PD. We also represent contexts of these experiments by QL
probability amplitudes, “mental wave functions.” We found that, besides the conven-
tional trigonometric interference, e.g., Tversky–Shafir [295], so-called hyperbolic
interference can be exhibited in cognitive science – Shafir–Tversky [275]. We also
found that matrices of transition probabilities for these experiments are not dou-
bly stochastic, as was found by Conte et al. [66]. Thus the probabilistic structure
of cognitive science is not simply nonclassical, it is fundamentally richer than the
probabilistic structure of quantum mechanics. Cognitive systems exhibit more com-
plex probabilistic behavior than electrons or photons! We developed a QL model
of decision making. In this model agents use not FTP, but its QL generalization to
obtain probabilities for possible decisions and estimate risks.



Chapter 8
Macroscopic Games and Quantum Logic

It was Niels Bohr who said that he believed that the discovery of quantum physics
really is something more than the discovery of the laws of microphysics. He claimed
that some aspects (mainly complementarity) of quantum mechanics can be mani-
fested in other branches of science (biology etc.). However, in spite of the fact that
quantum formalism proved to be the best description of physical processes with
molecules, atoms, atomic nuclei and elementary particles, it is not used much for
the description of other phenomena, cf., however, Chapters 5–7.

In this chapter we consider an interesting application of quantum formalism – the
quantum description of some games for macroscopic players. Such games we call
QL games.

This chapter is based on papers written by A. Grib, his student K. Starkov and
me [124, 125]. This chapter is essentially based on quantum logic. A reader who
is interested not in quantum logic, but just in QL games can move directly to
Chapter 9, in which another class of QL games will be presented without coupling
to quantum logic.

A natural candidate in the search for a QL macroscopic system without the use
of Planck’s constant is some kind of game. This game must be organized such that
disjunction and conjunction defined by the rules of the game are not Boolean. This
means that one can define the rules for conjunction ∧ and disjunction ∨ experimen-
tally: C = A∨ B if every time A-true, there follows C-true, every time B-true, there
follows C-true. D = A ∧ B if every time D-true, there follows A-true, every time
D-true, there follows B-true. Then one looks for other properties of such C, D in
the game considered:

Is C true if and only if A-true or B-true or can it be that C is true also in other
cases (there is not “only if”)?

Is the rule of distributivity confirmed in our game for all A, B, C?
To conclude the general discussion of why games are the most natural examples

of looking for application of quantum formalism one can remark that even such a
special feature of quantum physics as noncommutativity of operators can be found
in games. In games one deals with acts and acts very often depend on the order. A
typical example is that everybody understands the difference arising if one changes
the usual order, putting on first the shirt and then the suit...

A. Khrennikov, Ubiquitous Quantum Structure,
DOI 10.1007/978-3-642-05101-2 8, C© Springer-Verlag Berlin Heidelberg 2010
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The payoff matrix for the so-called Wise Alice game will be written in terms
of operators in finite-dimensional Hilbert space for the spin-one-half system. The
average profit of the Wise Alice game will be calculated as the expectation value of
the payoff operator in the tensor product of Hilbert spaces for Alice and her partner
Bob. Nash equilibrium points will be found for different situations of the Wise Alice
game.

We give explicitly the rules of the game Wise Alice. This especially concerns the
angles for projections of spin operators for Alice and Bob used for different cases
of the game. Then we shall give another example of the QL game using the lattice
for the spin-one system (massive vector meson in quantum physics). In contrast to
our example of the spin-one-half Wise Alice game, here one can see the role of
nondistributivity more explicitly, because it can be expressed in the payoff matrix
structure.

As we said before, the peculiar feature of these QL games will be the necessity to
use not the Kolmogorovian probability measure, but the probability amplitude. QL
interferences of the alternatives lead to new rules of calculation of average profits.
That is why when comparison of the average profit in cases of classical and QL
games is made, the profit occurs differently for these cases.

So these QL games demonstrate the situations where the formalism of quantum
physics is applied to macroscopic games. Our examples are totally different from
what is now widely discussed in many papers in the name of quantum games [100].
All examples with quantum coins, quantum gamblers etc. use, in one way or another,
microobjects described by quantum physics as hardware, while in our examples
everything is totally macroscopic.

However, some results obtained in the cited quantum game activity can be
applied to our examples. In our examples it is the strategies of Alice and Bob
that are described by the quantum formalism. Alice, Bob and their acts are totally
macroscopic, there is no need to use the Planck constant for them. It is the set of fre-
quencies of their acts that is calculated by use of the quantum formalism with wave
functions different for Alice and Bob. The optimal strategy for both participants is
described by the Nash equilibrium and it is characterized by the special choice of
wave functions for Alice and Bob giving the maximal profit for what he/she can get
independently of the acts of the other partner.

An interesting feature of our QL games is that their description by the quantum
formalism makes necessary the use of different probabilistic spaces when measur-
ing observables represented by noncommuting operators. Events (acts) are mathe-
matically described by projectors in Hilbert space. It is these projectors that form
the nondistributive lattice (quantum logic) on which the quantum probability or
the probability amplitude is defined. On commuting projectors one defines usual
probability measure by the Born rule. Typical for quantum theory, interferences of
alternatives arise. The quantum rule for the average profit takes into account these
interferences. That is one reason for the difference of the results of calculation of
this average following quantum rules and rules of the standard probability calculus
using Bayesian conditional probabilities.
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To conclude this introduction, we point to the recent publication of Aerts et al.
[9]. There they proposed another (in some sense more advanced) model of a game
for macroscopic players that produces quantum statistics.

8.1 Spin-One-Half Example of a Quantum-like Game

The game Wise Alice is an example of the well-known game in which each of the
participants names one of some previously considered objects (e.g. paper, scissors,
rock). In the case that the results differ, one of the players wins from the other some
agreed sum of money. The rules of the game are the following.

1. The participants of our game A and B, call them Alice and Bob, have a rectan-
gular box in which a ball is located. Bob puts his ball in one of the corners of the
box, but does not tell his partner which corner. Alice must guess in which corner
Bob put his ball.

2. Alice can ask Bob questions supposing a two-valued answer: “yes” or “no”.
Different from many of the usual games, the rules of this game are such that
in the case of a “yes” answer Alice does not receive any money from Bob. In
the opposite case she asks Bob to pay her some compensation. This feature is
described by the structure of the payoff matrix.

3. Unlike in other such games [248] Bob has the possibility of moving the ball to
any of the adjacent vertices of the rectangle after Alice asks her question.

This additional condition decisively changes the behavior of Bob, making him
become active under the influence of Alice’s questions. Owing to the fact that
negative answers are not profitable for him, he moves his ball to the “correct”
adjacent vertex, if possible. So if Alice asks the question “Are you in vertex 1? ”
Bob answers “yes” not only if he is in 1 but also when he was in 2 or 4 because of
the possibility of reacting to the question of Alice and moving his ball. However,
if the ball of Bob was initially in vertex 3 he cannot escape the negative answer,
whichever vertex he moves his ball to, and he fails, leaving the ball in the same
corner.

The same rule is valid for any vertex. One must pay attention that in this case
Alice not only gets the profit, but also obtains exact information on the position
of the ball: the honest answer of Bob immediately reveals this position.

Alice knows about the manipulations of Bob. Therefore Bob’s negative answers
are valuable to Alice, as only from such answers can Alice unambiguously check
exclusive positions of Bob. So different vertices are incompatible (exclusive)
relative to negative answers of Bob. This leads to experimentally defined con-
junction for Alice.

4. The game is repeated many times, each time Bob putting his ball in some corner
and Alice guessing which corner.

5. Due to rule 3 Alice can draw the graph of the game with four vertices and lines
connecting them, leading to the Hasse diagram of the spin-one-half system in
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which two noncommuting spin projections are measured. The reason for the
nondistributive lattice represented by the Hasse diagram arising for events in
the Wise Alice game is due to the special property of disjunction recognized by
Alice experimentally. She sees that

1 ∨ 2 = 2 ∨ 3 = 3 ∨ 4 = 1 ∨ 3 = 2 ∨ 4 = I,

where I is “always true.” Here 1,2, etc. are corresponding questions of Alice.
It is this unusual property of disjunction that makes Alice consult her friend,

a quantum physicist, for recommendations concerning the frequencies of her
questions about this or that vertex.

6. Concerning the frequencies of Alice’s questions and Bob’s putting the ball in
this or that vertex, one must formulate a special rule interpreting the idea of
preferences.

The characteristic of the Hasse diagram is that it can be represented by projectors
in Hilbert space nonuniquely in many different ways, by making unitary transfor-
mations of one of the noncommuting operators.

So assume Alice does not know the exact form of the rectangle used by Bob. Its
diagonals, which can be taken as length 1 in some units, can form different angles
θB. Depending on the angle, Bob, thinking that Alice will ask him about corner 1,
will place his ball more frequently in the vertex adjacent to vertex 1, that is closer
to vertex 1. This can be considered a psychological parameter of the game.

This angle is fixed for the game. Alice, not knowing the angle θB, uses the
hypothesis that it is some θA and her friend – the physicist – makes calculations
of her average profit using this θA. The choice of Alice of θA means that she thinks
that the preference of Bob’s frequencies will correspond to the shortest lines defined
by θA.1

So because of fixation of preferences for Bob’s reactions, the real free choice for
Bob is the choice between alternative vertices on the diagonals of the rectangle 1–3,
2–4.

Let the payoff matrix of Alice have the structure of a four-by-four matrix hik

representing Alice’s payoffs in each of 16 possible game situations, so that one has
some positive numbers a,b,c,d as her payoffs in those situations when Bob cannot
answer her questions affirmatively (Table 8.1). Our game is an antagonistic game,
so the payoff matrix of Bob is the opposite to that of Alice: (−hik).

Table 8.1 The payoff matrix
of Alice

A/B 1 2 3 4

1? 0 0 a 0
2? 0 0 0 b
3? c 0 0 0
4? 0 d 0 0

1 Thus Alice well knows Bob’s psychology, but she does not know the value of the angle θB.
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The main problem of game theory is to find so-called points of equilibrium or
saddle points – game situations that are optimal for all players at once. The strate-
gies forming the equilibrium situation are optimal in the sense that they provide to
each participant the maximum of what he/she can get independently of the acts of
the other partner. More-or-less rational behavior is possible if there are points of
equilibrium defined by the structure of the payoff matrix.

A simple criterion for the existence of equilibrium points is known: the payoff
matrix must have an element that is maximal in its column and at the same time
minimal in its row. It is easy to see that our game does not have such an equilibrium
point. Nonexistence of the saddle point follows from the strict inequality valid for
our game

max j minkhjk < minkmaxj hjk .

In spite of the absence of a rational choice at each turn of the game, when the
game is repeated many times some optimal lines of behavior can be found. To find
them one must, following [300], look for the so-called mixed generalization of the
game. In this generalized game the choice is made between mixed strategies, i.e.
probability distributions of usual (they are called differently from mixed “pure”
strategies) strategies.

As the criterion for the choice of optimal mixed strategies one takes the math-
ematical expectation value of the payoff, which shows how much one can win on
average by repeating the game many times. In usual classical games these expecta-
tion values of the payoff are calculated by using the Kolmogorovian probability, and
the optimal strategies for Alice and Bob are defined as such probability distributions
on the sets of pure strategies x0 = (x0

1 , x0
2 , x0

3 , x0
4 ) and y0 = (y0

1 , y0
2 , y0

3 , y0
4 ) that for

all distributions of x,y the von Neumann–Nash inequalities are valid:

HA(x0, y0) ≥ HA(x, y0),

HB(x0, y0) ≥ HB(x0, y),

where HA, HB -payoff functions of Alice and Bob are the expectation values of their
wins

HA(x, y) =
4∑

j,k=1

h jk x j yk, HB(x, y) = −
4∑

j,k=1

h jk x j yk . (8.1)

The combination of strategies satisfying the von Neumann–Nash inequalities is
called the situation of equilibrium in Nash’s sense. The equilibrium is convenient for
each player; deviation from it can make the profit smaller. In equilibrium situations
the strategy of each player is optimal against the strategy of his (her) partner.

The calculation of averages for the Wise Alice game, in which Bob reacts to her
questions, must be different from that in the classical game. Instead of the usual
probability measure one must use the probability amplitude (the wave function) and
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calculate probabilities for different outcomes using Born’s formula. The reason for
this is the following. If one defines the proposition of Alice that Bob’s ball is located
in vertex number k (defined by our rule 3) as αk , then for any j, k one has

α j ∨ αk = 1, (8.2)

α j ∧ αk = 0.

Pairs of propositions with the same parity (α1, α3), (α2, α4) are orthocomplemented.
The distributivity law is broken. So, for any triple of different j, k, l one has the
inequality

(α j ∨ αk) ∧ αl �= (α j ∧ αl ) ∨ (αk ∧ αl). (8.3)

Really, the left side of the inequality is equal to αl , while the right side is zero. So the
logic of Alice happens to be a nondistributive orthocomplemented lattice described
by the Hasse diagram in Fig. 8.1.

In the Hasse diagram lines going up intersect in disjunction, lines going down
intersect in conjunction. The lattice described by our Hasse diagram is isomorphic
to the ortholattice of subspaces of the Hilbert space of the quantum system with
spin one-half and the observables Sx , Sθ . For our case it is sufficient to take the real
(not complex) two-dimensional space. So one can draw on the plane two pairs of
mutually orthogonal direct lines {a1; a3}, {a2; a4} with the angle θ between them
coinciding with some angle θA or θB due to rule 6 of the game (Fig. 8.2).

Following the well-known constructions of quantum mechanics, we take instead
of the sets of pure strategies of Alice and Bob the pair of two-dimensional Hilbert
spaces HA,HB. Use of Hilbert space permits us to realize the nondistributive logic
of our players without difficulty. To the predicate αk put into correspondence the
orthogonal projector α̂k . The same is done for Bob. Then one writes the self-adjoint
operator in the space HA

⊗
HB, which is the observable of the payoff for Alice

ĤA =
4∑

j,k=1

h jk α̂ j ⊗ β̂k, (8.4)

Let Alice and Bob repeat their game with a ball many times and let us describe their
behavior by normalized vectors φ ∈ HA, ψ ∈ HB, so that knowing them one can
calculate the average according to the standard rules of quantum mechanics as

Fig. 8.1 The lattice of Alice’s
questions and Bob’s answers
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Fig. 8.2 Lattice of invariant
subspaces of observer Sx , Sθ

Eφ⊗ψ ĤA =
4∑

j,k=1

h jk 〈̂α jφ|φ〉〈β̂kψ,ψ〉 (8.5)

= ap1q3 + cp3q1 + bp2q4 + dp4q2.

Here we take into account our payoff matrix. The operators α̂1, α̂2 can be written as
two-by-two matrices

α̂1 =
(

1 0
0 0

)
, α̂2 =

(
cos2 θA, sin θA cos θA

sin θA cos θA sin2 θA

)
(8.6)

The projectors orthogonal to them are α̂3, α̂4, such that

α̂1 + α̂3 = α̂2 + α̂4 = I. (8.7)

The wave function φ can be defined on the plane as some vector with the angle
α, in general different from θA.Then the probabilities defined by Born’s rule as
projections on the corresponding basic vectors a1, a2, a3, a4 are

p1 = cos2 α, p3 = sin2 α, p2 = cos2(α − θA), p4 = sin2(α − θA) (8.8)

for Alice. For Bob one has some vector ψ with the angle β and θB for β2 if β1 has
the same form as α1:

q1 = cos2 β, q3 = sin2 β, q2 = cos2(β − θB), q4 = sin2(β − θB). (8.9)

The average profit is expressed as some function of α, β, dependent on parameters
θA, θB:

F(α, β) = a cos2 α sin2 β + c sin2 α cos2 β + b cos2(α − θA) sin2(β − θB) (8.10)

+ d sin2(α − θA) cos2(β − θB).

This function is defined on the square [0◦, 180◦] × [0◦, 180◦]. In paper [124] equi-
librium points for different values of a, b, c, d and parameters θA, θB were found.
These points correspond to Nash equilibria. Examples with two equilibrium points,
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one equilibrium point, and no such points at all were found. The results strongly
depend on the difference of angle parameters and values of payoffs in the payoff
matrix. Situations with two equilibrium points, as well as absence of such a point,
are obtained for different values of angles and not equal a, b, c, d. If one takes
θA = θB = 45◦ and all a, b, c, d equal to 1 one has the simple solution p1 = 1, p2 =
0.5, p3 = 0, p4 = 0.5 for Alice, q1 = 1, q2 = 0.5, q3 = 0.5, q4 = 0.5 for Bob.
So the wave functions for Alice and Bob in this case are just eigenfunctions of α̂1

The payoff of the Wise Alice in this case is E ĤA = 0.5. Due to equivalence of all
vertices one can take any other point as preferable for Alice and Bob, obtaining some
other eigenstate of the spin projection operator. The preference here means that Bob
never puts his ball into this vertex and Alice guesses this.The payoff of Alice in
all these cases of eigenstates of spin operator projections will be the same. This
can be compared with the result for the game called in [124] “the foolish Alice”,
who used standard probability calculus in the game with the same payoff matrix
and the same rectangle being ignorant about Bob’s reactions to her questions. Then
Nash equilibrium corresponds to equal probability for any vertex and the result is
E HA = 0.25, which is smaller than that obtained by her “wise” copy. However,
for the more general case [124] θA = 10◦, θB = 70◦, a = 3, b = 3, c = 5 one
has α = 145.5◦, β = 149.5◦ and one obtains for the Nash equilibrium in the “wise
Alice” game p1 = 0.679, p2 = 0.509, p3 = 0.321, p4 = 0.491, q1 = 0.258, q2 =
0.967, q3 = 0.742, q4 = 0.033. Thus, differently from the more-or-less trivial case
considered before, Bob and Alice here don’t use the strategy of placing the ball in
such a manner as to neglect totally one of the vertices. Their wave functions now
are not just eigenstates of their spin operators.

8.2 Spin-One Quantum-like Game

Now consider the game described by the graph that coincides with the graph of the
previous game but with the addition of one isolated point (Fig. 8.3).

This point is denoted as 0. The rules of the game generally are the same as in the
previous one. Bob has the same possibility to react to Alice’s questions by moving
his ball to the adjacent vertex and only his negative answers are valid for Alice.
If Bob is in the isolated point 0 he always gives her the “yes” answer, which is
nonprofitable for Alice. A new rule will be added by us later making possible for
Alice to ask two questions in some cases. We shall discuss it when writing the payoff
matrix. Using the rule for drawing Hasse diagrams corresponding to the graph of
automata one obtains Fig 8.4 for the case of the spin-one game.

Fig. 8.3 The graph of the
spin-one game
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Fig. 8.4 Hasse diagram of
the spin-one game

It is easy to see that elements A1, A3, A2, A4, A5 form the same diagram as was
considered for the spin-one-half game with the change of I to A5. But addition of the
point 0 leads not only to the appearance of the new logical atom A0 in our lattice,
but also to the appearance of the new level composed of A5, A6, A7, A8, A9, which
have the meaning of disjunctions

A5 = A1 ∨ A3 ∨ A2 ∨ A4, A9 = A4 ∨ A0, A7 = A2 ∨ A0.

Elements of the lattice can be represented by projectors on subspaces of R3 (Fig. 8.5).
To atoms correspond projectors on lines. A1, A2, A3, A4 are vectors in the plane.

One has A0⊥A5, A2⊥A4, A1⊥A3. The second level is represented by projectors
on planes in R3: A6 is the projector on the plane A0 A1, A7 – on A0 A2, A8 – on
A0 A3, A9 – on A0 A4. One has the orthogonality condition

Fig. 8.5 Representation of
the lattice by subspaces in R3
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A6⊥A3, A8⊥A1, A7⊥A4, A9⊥A2.

Our lattice is the nondistributive modular orthocomplemented lattice. The nondis-
tributivity is manifested due to

A7 ∧ (A1 ∨ A4) = A7 ∧ A5 = A2 �= (A7 ∧ A1) ∨ (A7 ∧ A4) = ∅. (8.11)

This lattice can be represented by self-conjugate operators describing the spin-
one system (massive vector meson) for which two noncommuting spin projections
Ŝz, Ŝθ are measured. One has eigenvalues S = 1, 0,−1. The projector on the zero
eigenvalue eigenvector is the same in Ŝz, Ŝθ , that is why one has 5 atomic elements
in the lattice. All projectors can be written as 3 × 3 matrices (see Table 8.2).

These are the well-known quantum mechanics operators of spin for the spin-1
system. The operators of observables of Bob are defined analogously, only the angle
θA can be changed to θB. Now let us discuss the payoff matrix. Besides the same
rules as were introduced for the spin-one-half QL game we add a new rule, arising
naturally from the appearance of a new level in comparison with the spin-one-half
game. The rule: Alice can ask not only one question, but two questions if the result
of the first question corresponds to the disjunction ∨. Owing to her second question
she can unambiguously guess where Bob’s ball is located. For example Alice asks
Bob the question: “Are you in 3?” The answer “no” means he is in either 0 or 1.
Then she can ask the question: “Are you in 0?” The answer “no” will mean that
he is at 1. As we formulated before, only negative answers are valid for Alice. So
she receives from Bob in the considered case of two negative answers the sum of
money v1. But if she fails she receives nothing! If Alice asks the question 0 and the
answer is “no”, then Bob is in 1∨2∨3∨4 and by guessing correctly this disjunction
Alice receives some u0 for any case. If Alice does not want to risk then receiving the
answer “no” on her question: “Are you in 3?” she doesn’t ask the second question
and receives some u3. The same rule is true for any question. To write the payoff

Table 8.2 Matrices

A0 =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ A1 =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ A2 =
⎛

⎝
cos2 θA sin θA cos θA 0

sin θA cos θA sin2 θA 0
0 0 0

⎞

⎠

A3 =
⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ A4 =
⎛

⎝
sin2 θA − sin θA cos θA 0

− sin θA cos θA cos2 θA 0
0 0 0

⎞

⎠ A5 =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠

A6 =
⎛

⎝
1 0 0
0 0 0
0 0 1

⎞

⎠ A7 =
⎛

⎝
cos2 θA sin θA cos θA 0

sin θA cos θA sin2 θA 0
0 0 1

⎞

⎠ A8 =
⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠

A9 =
⎛

⎝
sin2 θA − sin θA cos θA 0

− sin θA cos θA cos2 θA 0
0 0 1

⎞

⎠
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matrix put in the left corner the question that, in those cases when Alice risks it,
plays the role of the second question. Putting

u0 < v1, v2, v3, v4 (8.12)

u1 < v0, v3

u2 < v0, v4

u3 < v0, v1

u4 < v0, v2

where all ui , vk are positive numbers one can define the payoff matrix (Table 8.3).
Let us explain again some rules defining the payoff matrix. For example, Alice

asks the question: “Are you in 0?” The answer is “no” ! Then she asks the second
question: “Are you in 3?” The answer “no ” means that Bob is in 1 and he pays v1.
If Alice first asks question 1 and gets the “no” answer, then asks 3 and again gets
“no” she knows that Bob is in 0 and she gets v0. The same applies if she asks 2

Table 8.3 The payoff matrix A/B 0 1 2 3 4

0 0 u0 u0 u0 u0

1 0 0 0 v3 0
2 0 0 0 0 v4

3 0 v1 0 0 0
4 0 0 v2 0 0

1 u1 0 0 u1 0
0 0 0 0 v3 0
2 v0 0 0 0 0
3 v0 0 0 0 0
4 v0 0 0 0 0

2 u2 0 0 0 u2

0 0 0 0 0 v4

1 v0 0 0 0 0
3 v0 0 0 0 0
4 v0 0 0 0 0

3 u3 u3 0 0 0
0 0 v1 0 0 0
1 v0 0 0 0 0
2 v0 0 0 0 0
4 v0 0 0 0 0

4 u4 0 u4 0 0
0 0 0 v2 0 0
1 v0 0 0 0 0
2 v0 0 0 0 0
3 v0 0 0 0 0

5 v0 0 0 0 0
6 0 0 0 v3 0
7 0 0 0 0 v4

8 0 v1 0 0 0
9 0 0 v2 0 0
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or 4 and then 3. Alice’s questions 5,6,7,8,9 correspond to questions about disjunc-
tions. Negative answers to them make it possible to guess where Bob is by only this
one question. For example answer “no” to 5 (one must look at the Hasse diagram
Fig. 8.4) means that Bob is in 0 and she gets v0. A negative answer to 6 means
that he is in 3 and she gets v3, etc. The nondistributivity of the lattice is manifested
in that, for example, owing to (8.11), by asking: “Are you in 0?” and receiving a
negative answer she concludes that Bob is in A5 = A1 ∨ A4 and then asking: “Are
you in 4?” and receiving a negative answer she concludes that he is in A2 and gets
the profit v2. However, A5 is also equal to A2 ∨ A4 because of nonuniqueness of the
disjunction, which is why Alice can come to the same conclusion without breaking
her mind by the non-Boolean nondistributive logic! The payoff operator for Alice
can be written as

ĤA = u0 Â5 ⊗ (B̂1 + B̂2 + B̂3 + B̂4) + u1 Â8 ⊗ (B̂0 + B̂3) (8.13)

+ u2 Â9 ⊗ (B̂0 + B̂4) + u3 Â6 ⊗ (B̂0 + B̂1) + u4 A7(B̂0 + B̂2)

+ v0 Â0 ⊗ B̂0 + v1 Â1 ⊗ B̂1 + v2 Â2 ⊗ B2 + v3 Â3 ⊗ B̂3

+ v4 Â0 ⊗ B̂4 + v1( Â9 Â6| ⊗ B̂1 + v2( Â9 Â7) ⊗ B̂2

+ v3( Â5 Â8) ⊗ B̂3 + v4( Â5 Â9) ⊗ B̂4

The strategies of Alice and Bob are defined as vectors with angles

φ = (cos α1, cos α2, cos α3), ψ = (cos β1, cos β2, cos β3) (8.14)

α1, α2, β1, β2 ∈ [0, π ], cos α3, cos β3 ≥ 0,

cos2 α1 + cos2 α2 + cos2 α3 = 1, cos2 β1 + cos2 β2 + cos2 β3 = 1.

The average profit of Alice is calculated as

E ĤA = < φ|⊗ < ψ |ĤA|ψ > ⊗|φ >= u0 p5(q1 + q2 + q3 + q4)

+ u1 p8(q0 + q3) + u2 p9(q0 + q4) + u3 p6(q0 + q1) + u4 p7(q0 + q2)

+ v0 p0q0 + v1 p1q1 + v2 p2q2 + v3 p3q3 + v4 p4q4, (8.15)

where

pi =< Aiφ|φ >, qi =< Biψ |ψ >, (8.16)

p0 = cos2 α3, p1 = cos2 α1,

p2 = cos2 θA cos2 α1 + sin θA cos θA(cos2 α1 + cos2 α2) + sin2 θA cos2 α2,

p3 = cos2 α2, p4 = 1 − p0 − p2,

p5 = 1 − p0, p6 = 1 − p3, p7 = 1 − p4, p8 = 1 − p1, p9 = 1 − p2,

q0 = cos2 β3, q1 = cos2 β1



8.3 Interference of Probability in Quantum-like Games 127

q2 = cos2 θB cos2 β1 + sin θB cos θB(cos2 β1 + cos2 β2) + sin θB cos2 β2,

q3 = cos2 β2, q4 = 1 − q0 − q2,

q5 = 1 − q0, q6 = 1 − q3, q7 = 1 − q4, q8 = 1 − q1, q9 = 1 − q2.

For different choices of θA, θB and different ui , vk one can obtain different Nash
equilibria with some fixed values of αi , βk .

8.3 Interference of Probability in Quantum-like Games

Here we shall discuss the following question: If Alice doesn’t know that Bob has the
facility to move his ball when asked by Alice, can she get an understanding of this
facility by observing the frequencies of his putting the ball in this or that vertex?
This puts us into analysis of the (von Mises) frequency probability and our basic
idea of the context dependence of probabilities. Similar to the case of PD games, in
general FTP is violated and its QL modification, FTPQL, arises. The probabilistic
phase θ is defined on the basis of the coefficient of interference. The latter provides
a measure of deviation of FTPQL from FTP.

For the case of QL games (spin-one-half and spin-one cases) this θ is equal to
zero (the coefficients of interference are equal to ±1) and A, C correspond to two
spin projections having values +1 or −1.

As we discussed before for the general case of Nash equilibrium with some θA, θB

and nonequal values of a, b, c, d for the spin-one-half game, the state of Bob is some
superposition of vectors of the basis for ŜxB

|ψ >= c1|e1 > + c3|e3 > (8.17)

and the probability for definite e1 is

|c1|2 = | < ψ |e1 > |2. (8.18)

In the basis of ŜθB we have

|ψ >= c2|e2 > + c4|e4 > (8.19)

and

|e1 >= cθ |e2 > + c̃θ |e4 >, (8.20)

so, taking into account different signs for our coefficients we get

< ψ |e1 > |2 = |c2cθ + c4c̃θ |2 (8.21)

= c2
2c2

θ + c2
4c2

θ ± 2|c2||cθ ||c4| · |c̃θ |.
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In our case of real space all the coefficients are real and expressed as trigonometric
functions of corresponding angles.

This formula can be understood as the generalization of FTP and if Alice, by
looking at frequencies, can recognize it in Bob’s behavior she can understand the
QL nature of his game.

In the game Wise Alice one has two different supplementary observables: mea-
suring Sx , meaning Alice asking questions about vertices of the diagonal “1–3” or
measuring Sθ , Alice asking questions about vertices of the diagonal “2–4”. But it is
important to notice that owing to the structure of our game – the possibility of Bob
changing the position of the ball by reacting to the question of Alice – we could
not select, for example, elements with the property “1–3” without disturbing the
property “2–4”. So if one could consider the ensemble of possible game situations
for Bob before Alice put her questions and call this ensemble S0, then considering
questions “1–3” of Alice as some filtration leading to ensemble S1, the ensemble S1

due to Bob’s reactions will not coincide with S0, i.e., the subensemble of nondis-
turbed Bob’s positions.

Let us analyze from this point of view of contextually dependent subensem-
bles the simple situation of the spin-one-half game with the rectangle and all
a, b, c, d equal to one in the payoff matrix with the Nash equilibrium given by
p1 = 1, p3 = 0, p2 = 1/2, p4 = 1/2.

What does it mean? It means that the initial ensemble of Bob was such that he
never put his ball in 3. As to vertices 2 or 4 he put his ball equally in either 2
or 4. Without Alice’s questions changing the whole situation one could think of his
frequencies as if N1 = 2N2 = 2N3 = 2m, so that the frequencies for nonperturbed
ensembles are

ω4 = ω2 = 1

4
, ω1 = 1

2
, ω3 = 0. (8.22)

However if Alice makes a selection of subensembles by asking questions concern-
ing the ends of diagonals “1–3”, “2–4” of the rectangle, the whole picture will be
changed due to Bob’s reactions. She will never see the ball in 3 as it was in the initial
ensemble, but all balls will be moved to 1 when question 1 is asked. This leads to
the situation p1 = 1, p3 = 0.

If questions 2,4 are asked and 1,3 are considered as meaningless, because of
always a “yes” answer, then all the balls will be equally distributed between 2 and
4! That is the meaning of p2 = p4 = 1/2.

So her friend, the quantum physicist, supposing this Nash equilibrium strategy
of Bob and calculating the average profit for Alice, will advise her to ask with
equal frequency questions 2 and 4. Asking question 1 will be unprofitable for Alice
because Bob will never give her a negative answer. The average profit will be 0.5 as
we said before. It is easy to see that our rule 6 concerning interpretation of the angle
for spin projection in terms of preferences and corresponding frequencies is directly
manifested in the situation of eigenstate Nash equilibrium. In the more general case
context dependence will be manifested not so trivially, interference terms must be
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taken into account and recommendations of the quantum physicist for Alice will be
more sophisticated.

In conclusion, one should remark that surely not for all kinds of games with
reactions hidden from one of the partners does one necessarily come to the quantum
formalism. It is only for special kind of graphs of games that one arrives at Hasse
diagrams of the quantum logical nondistributive modular orthocomplemented lat-
tice. If the graph is such that the lattice is nonmodular or not orthocomplemented
one will not have the QL structure. It is necessary to describe stochasticity in such
cases by something different either from Kolmogorovian probability or from the
quantum probability amplitude.

In particular, Alice and Bob can choose QL strategies that cannot be represented
by complex amplitudes, but by hyperbolic ones. In such a case we obtain hyperbolic
QL games. Moreover, it may happen that e.g. Alice’s state is given by the complex
amplitude and Bob’s state by the hyperbolic one. In such a case we obtain hyper-
trigonometric QL games. Has nothing been done in this direction, e.g. to find Nash
equilibria?

8.4 Wave Functions in Macroscopic Quantum-like Games

Of course, the wave functions of Alice and Bob are not given by God. Moreover, in
contrast to really quantum games, we do not use real quantum systems as sources
of wave functions. We discuss in more detail the structure of QL games and in
particular generation of the wave functions of Alice and Bob.

One must divide the game into two parts:

1. The preparation part, the rules of which are similar to those given in Section 8.1.
2. Measurement of two or more noncommuting operators on the described system.

This second part consists of two or more classical games, the strategies of which
must be those chosen by the partners in the first part. This “must” means some
following of the “tradition” chosen in the first part.

In standard quantum mechanics, as is known, the frequencies of the results for
measurements of different noncommuting observables with a definite prepared wave
function are predetermined and cannot be arbitrary.

From the point of view of axiomatic quantum theory as the theory of quantum
logical lattices, part 2 of our games corresponds to taking distributive sublattices of
the initial nondistributive lattice with values of frequencies (or classical probabili-
ties) prescribed by the quantum probabilistic measure (the wave function).

Preparation of the wave functions of Alice and Bob means defining frequencies
of definite exclusive positions of Bob’s ball and Alice’s questions. These frequen-
cies, however, differ from classical games in having less freedom in their definition.
For example, in our first game imitating the spin-one-half system with two noncom-
muting observables, Alice and Bob, owing to constraint of the frequencies by the
wave function, can only define one angle freely.
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Besides the examples considered in our previous papers, an example of a spin-
one-half system with three noncommuting observables of spin projections is dealt
with. For this case one can look for imitations of Heisenberg uncertainty relations
for spin projections in the macroscopic quantum game.

Let us describe these rules more explicitly.

1. The preparation stage
Alice and Bob have two quadrangles, one for Alice, another for Bob. Bob puts
the ball in a vertex of his rectangle. Alice has to guess exactly in which vertex
Bob put his ball. She does this by asking questions: “Is the ball in vertex “a”?”
However Bob gives the answer “yes” not only if the ball is in “a” but also if the
ball is in vertices connected by one arch with “a”. It is only if the ball is in the
opposite vertex that he cannot move it and definitely answers “no”. This means that
only negative answers of Bob are nonambiguous for Alice. In stage 1 Alice fixes
the number of nonambiguous answers of Bob and calculates some frequencies for
opposite vertices:

ω1,B = N1

N1 + N3
, ω3,B = N3

N1 + N3
, (8.23)

ω2,B = N2

N2 + N4
, ω4,B = N4

N2 + N4
. (8.24)

Now, to make the game symmetric, the same is supposed for Alice. Alice puts her
ball in some vertex of the quadrangle and Bob must exactly guess the vertex. Only
negative answers are nonambiguous for Bob.

To each graph of Fig. 8.6 corresponds the nondistributive lattice of Fig 8.1.
Definite frequencies ωa,B mean that the wave function of Bob’s ball is given as

ψB and the representation of the lattice (Fig. 8.1) is defined such that two pairs of
orthogonal projectors p̂1, p̂3, p̂2, p̂4 are chosen. Then we have ωa,B = 〈ψb |̂pa|ψb〉,
as it must be for the quantum spin-1/2 system with two observables – spin projec-
tions Ŝz and Ŝθ with θ some angle being measured. Definite frequencies ωa,A define
the wave function of Alice’s ball and some observables Ŝz , Ŝθ for Alice.

We can compare the process of determination of the wave function with estab-
lishing the tradition of the game with Bob. At the first stage (preparation) Alice
tested Bob’s behavior and she found interesting psychological features of Bob. She
encoded Bob’s behavior (moving of balls) by probabilities-frequencies, which are in

Fig. 8.6 Alice’s and Bob’s
squares
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turn encoded by the complex probability amplitude. After such a preparation Alice
will play with Bob without setting more time for testing his behavior, just by using
her wave function.

For example, one can consider preparation for marriage. At that stage it is impor-
tant to find probabilistic characteristics of Bob’s behavior. However, if Alice decided
to marry Bob (in spite of all the problems with his behavior, i.e. without any hope of
being sure of all his answers), after such a decision she just behaves according to her
wave function, which was created during the preparation stage.2 We remark that if
Alice were sure of all the answers of Bob, she would be fine with classical noncon-
textual probability, i.e. to describe Bob without appealing to a complex probability
amplitude.

One can also consider the following example. At the preparation stage some
system of civil laws is created (on the basis of rather unfair behavior of people).
After this preparation stage this system of laws is just applied. Thus one is no
longer interested in “folk psychology.” One is interested only in application of the
established system of laws. This system of laws is represented by the complex (or
hyperbolic or hyper-trigonometric) probability amplitude – the “wave function of
folk psychology.”

Our model can also be applied to describe the evolution of a complex biological
system composed of various species. In our model this process has two main stages:
a) the elaboration of rules of QL-gambling between species; b) QL-gambling. These
stages cycle. Essential changes in environment induce new rules and new games.

We remark that by considering only frequencies (8.23), (8.24) Alice can deter-
mine only a special class of wave functions, i.e. without phase dependence. To
obtain all possible wave functions, she should also collect conditional frequencies
and apply QLRA.

2. Measurement stage
Two classical games are considered. Bob puts his ball only in vertices on one diag-
onal in the first game, let it be 1, 3. Alice asks questions trying to guess the position
of Bob’s ball. However, the frequencies of Bob putting his ball in one of the vertices
must be ω1,B, ω3,B, defined at the first stage. The frequencies of Alice’s questions
must be ω1,A, ω3,A. Money is paid to Alice at this stage and the amount is fixed
by the payoff matrix. In the second game Bob puts the ball in vertices 2,4 with
frequencies ω2,B, ω4,B and Alice asks questions with frequencies ω2,A, ω4,A. The
profits from the two games are added.

The result will be given by use of the expectation value of the sum of projectors
multiplied by the elements of the payoff matrix for the tensor products of two wave
functions. The quantum game so formulated is an irrational game, which makes its
theory different from the usual game theory. The payoff matrix is known to the play-
ers from the beginning, but as we see at the measurement stage it doesn’t motivate

2 We cannot exclude “collapse” of this mental wave function as a consequence of future interaction
with Bob or other people.
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their behavior. However, it can motivate somehow their behavior at the first stage,
when the wave functions and “observables” are defined. Nash equlibria for fixed
angles for observables can be understood as some “patterns” in the random choice
of two players.

8.5 Spin-One-Half Game with Three Observables

Here we consider a more complicated game imitating a particle with spin-one-half,
for which three noncommuting observables Ŝx , Ŝy , Ŝz are measured. This case is
interesting because here one can imitate Heisenberg uncertainty relations for spin
projections in the case of our quantum game. For simplicity we consider that the
same observables are measured by Alice and Bob (no difference in angles between
projections is supposed). The Hasse diagram for this case is given in Fig. 8.7.
Here orthogonal projectors are 1−4, 2−5, 3−6, which correspond for the spin-1/2
case to Ŝx = ±1/2, Ŝy = ±1/2, Ŝz = ±1/2.
The rule is the same, Bob can move his ball by one step, depending on Alice’s
question. For example, he can move to 1 from 2, 6, 3, 5 but not from 4 etc. For Alice
the answer “no” on 1 means “Bob is at 4”, the answer “no” on 2 means he is at 5,
etc. The same is supposed for Alice’s ball and Bob’s questions. Representation of
atoms of the Hasse diagram (Fig. 8.7) by projections is

A1 =
(

1 0
0 0

)
A2 = 1

2

(
1 1
1 1

)
A3 = 1

2

(
1 −i
i 1

)

A4 =
(

0 0
0 1

)
A5 = 1

2

(
1 −1

−1 −1

)
A6 = 1

2

(
1 i

−i 1

)

The graph of the game, showing the vertices in which Bob and Alice put their
balls is given in Fig 8.8 and the payoff matrix in Table 8.4.

Then the payoff operator of the quantum game is

P̂ = v1 A1 ⊗ B4 + v2 A2 ⊗ B5 + v3 A3 ⊗ B6 + v4 A4 ⊗ B1 + v5 A5 ⊗ B2 + v6 A6 ⊗ B3.

Fig. 8.7 The Hasse diagram
of spin-one-half game with
three observables
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Fig. 8.8 The graph of
“ball-vertices”

Table 8.4 The payoff matrix
of Alice

A\B 1 2 3 4 5 6

1 0 0 0 v1 0 0
2 0 0 0 0 v2 0
3 0 0 0 0 0 v3

4 v4 0 0 0 0 0
5 0 v5 0 0 0 0
6 0 0 v6 0 0 0

Here all Bi for Bob have the same form as Ai . The strategies of Alice asking ques-
tions and Bob putting the ball in the polygon (Fig. 8.8) are described as frequencies
of choices in the “preparation part” given by wave functions, represented as vectors
in complex Hilbert space: ϕA = (cos α, eiθ sin α), ψB = (cos β, eiω sin β). So gen-
erally, different from real two-dimensional space in the previous example, one can
take complex space in quantum spin-one-half physics. The average profit in three
subsequent “measurement” games is

EA = 〈ϕA| ⊗ 〈ψB| P̂ |ψB〉 ⊗ |ϕA〉.

This is calculated as

EA = v1 cos2 α sin2 β + v2
1 + cos θ sin 2α

2
· 1 − cos ω sin 2β

2
+

+v3
1 + sin θ sin 2α

2
· 1 − sin ω sin 2β

2
+ v4 sin2 α cos2 β+

+v5
1 − cos θ sin 2α

2
· 1 + cos ω sin 2β

2
+ v6

1 − sin θ sin 2α

2
· 1 + sin ω sin 2β

2
.

So Nash equilibria can be found by analyzing the function EA(α, β, θ, ω). The sim-
plest case is when θ = ω = 0 and ϕA, ψB are real. For this case define
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a = v1, b = v4, c = −v2 + v3 + v5 + v6

4
, d = v2 + v3 − v5 − v6

4
,

then EA = H (α, β), where

H (α, β) = a cos2 α sin2 β+b sin2 α cos2 β+c(1−sin 2α sin 2β)+d(sin 2α−sin 2β).

To find Nash equilibria one must look for intersection points of curves of reaction
of Bob and Alice. We investigated three cases.

• a = 7, b = 1, c = –2, d = 1.5. Nash equilibrium exists for α = β = π/8. The value
of the payoff at this point is equal to 2.

• a = 1, b = 1, c = −2, d = 0. No Nash equilibrium exists for this case.
• a = 1, b = 10, c = −6, d = 4. Nash equilibrium exists for α = 87.9◦, β = 69.2◦,

EA = 4.6.

8.6 Heisenberg’s Uncertainty Relations

As we said before, the game consists of two parts:

1. Preparation, when the nondistributive quantum logical lattice was used, leading
to the choice of Alice and Bob of their wave functions.

2. Measurement, described by three different games, using orthogonal vertices of
the graph (Fig. 8.7) and described by frequencies obtained from part 1.

As is well known from quantum mechanics, Heisenberg’s uncertainty relations hold
for spin projections, so that if

[̂Sx , Ŝy] = i�Ŝz,

then for dispersions one has

Dψ Sx · Dψ Sy � �
2

4
(Eψ Sz)

2. (8.25)

These relations for the graph are equivalent to the relation for frequencies obtained
from the wave function:

p1 p4 p2 p5 ≥ 1

16
(p3 − p6)2. (8.26)

Here the pi -frequencies are for Alice. The same relation is valid for Bob. In our case

p1 = cos2 α, p2 = 1 + cos θ sin 2α

2
, p3 = 1 + sin θ sin 2α

2
,

p4 = sin2 α, p5 = 1 − cos θ sin 2α

2
, p6 = 1 − sin θ sin 2α

2
. (8.27)
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Then (8.26) means sin2 2α ≤ 1, which is always valid.
In our case of three classical games with probabilities prescribed by (8.27) one

can consider measuring three random variables A1, A2, A3 taking values ±1 and
calculate dispersions and expectation values

D(A1) = sin2 2α, D(A2) = 1 − (cos θ sin 2α)2, E(A3) = sin θ sin 2α.

So one obtains

D(A1)D(A2) ≥ (E(A3))2 (8.28)

equivalent to (8.26). Here differently from (8.25) we put � = 1 and there is no
1/2 as there was for the spin variable. However, if one includes in the notion of
observable the payment defined by the payoff matrix, then for all equal v in the
payoff matrix one can see that dimensional “price” can play the role of the Planck
constant.

8.7 Cooperative Quantum-like Games, Entanglement

In all previous sections we have considered noncooperative games. Alice and Bob
created their wave functions without cooperation. Therefore the total wave func-
tion was always the tensor product of two wave functions. However, at the stage of
preparation Alice and Bob can cooperate. For example, both Alice and Bob want to
become a couple, so they cooperate in testing their psychological behaviors. Such
a preparation would not create a tensor product of two wave functions (at least
for nontrivial cooperation). The wave function underlying the game would be an
arbitrary element of the tensor product of state spaces of Alice and Bob,

ψAB ∈ HA ⊗ HB.

The payoff is obtained as the average with respect to such a state ψAB. If this state
is not factorizable one can talk about QL entanglement of strategies of Alice and
Bob. Of course, such an entanglement has nothing to do with nonlocality. This is
the result of simultaneous preparation.



Chapter 9
Contextual Approach to Quantum-like
Macroscopic Games

In Chapter 8 the QL theory of macroscopic games was developed on the basis of
quantum logic. These investigations were initiated by Andrey Grib and then contin-
ued in collaboration with me. They induced understanding that games for macro-
scopic players having all the distinguishing features of “really quantum games”
(i.e., games that are based on microscopic sources of randomness such as pairs of
entangled photons) can be easily constructed and represented by means of quantum
logic. This QL (in fact, quantum logic) program on macroscopic games stimulated
the author to apply the contextual statistical model to represent nonclassical (from
the probabilistic point of view) games in the contextual form and then, using QLRA,
map them into the complex (or even hyperbolic) Hilbert space. We shall do this in
the present chapter. One of the consequences of considerations in this chapter is that
in order to simulate QL games one does not need sources of quantum particles, e.g.,
photons. It is enough to use classical random generators.

9.1 Quantum Probability and Game Theory

We present a simple game between macroscopic players, say Alice and Bob (or in a
more complex form - Alice, Bob and Cecilia), which can be represented in the QL
way – by using a complex probability amplitude (game’s “wave function”) and non-
commutative operators. The crucial point is that the games under consideration are
so-called extensive form games, see e.g. [70]. Here the order of actions of players is
important; such a game can be represented by a tree of actions. The QL probabilistic
behavior of players is a consequence of incomplete information, which is available
to e.g. Bob about the previous action of Alice. In general one cannot construct a
classical probability space underlying a QL game – even for a QL game with two
players. In a QL game with three players Bell’s inequality for averages of payoffs
can be written. It can be violated. The most natural probabilistic description in such a
framework is given by our contextual probability theory. We shall use QLRA to find
QL representations of extensive form games. The probabilistic structure of our game
(for two players) can be considered as Gudder’s probability manifold [126, 127]
with the atlas having two charts.
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138 9 Contextual Approach to Quantum-like Macroscopic Games

The QL behavior can be produced by local gambling. However, QL gambling can
be completed by interactions between players (of course, laws of special relativity
are not violated).

9.2 Wine Testing Game

A restaurant has a good collection of (only) French and Italian wines of various
sorts. Couples come to this restaurant for dinner, and to have more fun they play the
following Wine Game, which consists of two wine tests.

A1) Alice selects a bottle (without telling her friend Bob the wine’s name) and
proposes that he tests the wine. A bottle of this wine is opened in the restaurant’s
kitchen; Bob gets just a glass of this wine. Alice asks him the question:

“Is it French or Italian?”

A2) If Bob answers (after testing) correctly, he gets some amount of money; if
not, he loses money and Alice gets some amount of money.

The choice in A1 is not totally random, Alice has her own preferences (later she
wants to share the chosen bottle with Bob).

In the second part of the game Alice and Bob interchange their roles, so Bob
starts by choosing a bottle of French or Italian wine and so on.

We introduce for the first and second parts of the game the elements of the pay-
ment matrices

(hb
F F ;k, hb

F I ;k, . . .), (ha
F F ;k, ha

F I ;k, . . .), k = 1, 2.

Here the indexes k = 1, 2 denote the first and second part of the game and
F I, . . . , I I combinations of choices of Alice and Bob.1 The upper indexes a, b
are marks for Alice’s and Bob’s payoffs. It is natural to assume that

hb
F F ;1, hb

I I ;1 > 0, hb
F I ;1, hb

I F ;1 < 0

as well as

ha
F I ;1, ha

F I ;1 > 0, ha
F F ;1, ha

I I ;1 < 0.

In the zero sum game

hb
F F ;k = −ha

F F ;k, . . . , hb
I I ;k = −ha

I I ;k .

1 We also remark the Alice’s choice can be considered as an “element of reality”, since her, e.g.,
F, is really French wine, but Bob’s F may be in reality either French or Italian wine, cf. with
discussions about realism in quantum mechanics, e.g., [87, 88, 277].
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Each part of this game can be represented as an extensive form game, hence, by
a tree, see http://en.wikipedia.org. This tree is very simple and it has the following
branches representing actions of Alice and Bob; each branch ends with the pair of
payoffs, the symbol “v” used for vertices and “act” for corresponding actions. The
first part of the game is represented by the tree with the branches

v = A − − − act = F − − − v = B − − − act = F − −(hb
F F ;1, ha

F F ;1);

v = A − − − act = F − − − v = B − − − act = I − −hb
F I ;1, hb

F I ;1);

v = A − − − act = I − − − v = B − − − act = F − −(hb
I F ;1, ha

I F ;1);

v = A − − − act = I − − − v = B − − − act = I − − − (hb
I I ;1, ha

I I ;1).

As always, we are interested in averages of wins-losses of Alice and Bob.
We consider the following probabilities:

1) Probabilities of Alice’s preferences for a bottle of French wine and a bottle of
Italian wine, respectively, from the wine collection of the restaurant:

pa
C (F), pa

C (I ).

Here the index C is related to the whole context of the game, in particular, to the
collection of wines. Another restaurant has another collection of wines, and Alice
would have other preferences.

2) Probabilities of recognizing French wine after testing (by Bob) a bottle of
French wine that was chosen by Alice for the test: pb|a

F |F ; the probability of a mistake

under this condition, i.e., claiming that the wine is Italian, is then pb|a
I |F = 1 − pb|a

F |F .

In a similar way we introduce probabilities pb|a
I |I and pb|a

F |I . We have the matrix of
transition probabilities

Pb|a = (pb|a
β|α), β, α = I, F.

Since in this chapter we will consider various combinations of pairwise condition-
ing, it is convenient to use the upper index to point out precisely the type of condi-
tioning. So, we write pb|a

β|α, instead of pβ|α (as we did before).
3) Similarly we introduce probabilities pb

C (F) and pb
C (I ) for Bob’s preferences

(for the same collection of wines) as well as probabilities pa|b
F |F , . . . , pa|b

I |I , which
represent Alice’s ability to recognize the origin of the wine. The matrix of transition
probabilities is Pa|b = (pa|b

α|β), α, β = I, F.

It is convenient to describe this game by a contextual probabilistic model with
probabilities {pa

C (α), pb
C (β), pb|a

β|α), pa|b
α|β}, where C ∈ C and the family C describes

the variety of contexts (e.g., wine collections) chosen for the game. We denote this
model by the symbol MWG.

Finally, we introduce probabilities that Bob will announce the result β(= F, I ) in
the game that Alice starts with the result α (which is hidden from Bob): pab

C (α, β) =
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pa
C (α)pb|a

β|α, and similar probabilities for the game which is started by Bob, pba
C (β, α).

The latter are defined via a|b-contextual probabilities pa|b
α|β. These are “joint

probability distributions”, see (3.7).
Probability pab

C serves well for the first part of the game – when Alice chooses
a bottle: pa

C (α) = ∑
β pab

C (α, β). However, it could not be used in the second part
of the game, since in general: pb

C (β) �= ∑
α pab

C (α, β). The second part of the game
is served by the probability pba

C . The tricky thing is really the combination of two
games. We point out that in general the equality

pab
C (α, β) = pba

C (β, α) (9.1)

can be violated, see Sect. 3.1.4. This is the main source of “nonclassicality” of our
game.

Then average for wins–losses in the first part of the game for Bob is given by

Eb
1 (C) = hb

F F ;1 pab
C (F, F) + hb

F I ;1 pab
C (F, I ) + hb

I F ;1 pab
C (I, F) + hb

I I ;1 pab
C (I, I ),

see (3.8). The average for Alice in the first part of the game (in general we can
consider a nonzero-sum game) is given by

Ea
1 (C) = ha

F F ;1 pab
C (F, F) + ha

F I ;1 pab
C (F, I ) + ha

I F ;1 pab
C (I, F) + ha

I I ;1 pab
C (I, I ).

We remark that the maps (α, β) → hb
α,β;1 and (α, β) → ha

α,β;1 can be considered
as classical random variables on the Kolmogorov probability space Pab

C with Ω =
Xa × Xb, where Xa = Xb = {F, I }, and probability P(α, β) = pab

C (α, β).
In the same way the averages for Alice and Bob in the second part of the game

are given by

Ea
2 (C) = ha

F F ;2 pba
C (F, F) + ha

F I ;2 pba
C (F, I ) + ha

I F ;2 pba
C (I, F) + ha

I I ;2 pba
C (I, I ).

Eb
2 (C) = hb

F F ;2 pba
C (F, F) + hb

F I ;2 pba
C (F, I ) + hb

I F ;2 pba
C (I, F) + hb

I I ;2 pba
C (I, I ).

Here the maps (β, α) → ha
β,α;2 and (β, α) → hb

β,α;2 can be considered as classical
random variables on the Kolmogorov probability space Pba

C with Ω = Xb × Xa and
probability P(β, α) = pba

C (β, α).
Thus to describe both parts of the game one needs two Kolmogorov probability

spaces for fixed context C. To describe games played for a variety of contexts one
needs a collection of Kolmogorov spaces. It is more convenient to operate in the
contextual probabilistic model MWG.

Averages of total wins–losses are

Eb(C) = Eb
1 (C) + Eb

2 (C), Ea(C) = Ea
1 (C) + Ea

2 (C).
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It is convenient to introduce a “wine-observable” for Alice: a = F, I. This observ-
able appears in two different contexts. The first context, C, is the context of selection
of a bottle from the wine collection. Alice chooses a bottle and says to herself (not
Bob!) or just thinks – it is French wine (or it is Italian wine). The second context
appears in the second part of the game when Alice should test wine proposed by Bob
and after that say: it is French wine (or it is Italian wine). In fact, to be completely
correct one should consider two different observables corresponding to these con-
texts. However, to have a closer analogy with quantum mechanics, we proceed with
one observable. Alice is considered as simply an apparatus that says either “French
wine” or “Italian wine” (cf. with Stern–Gerlach magnet, which “says” either “spin
up” or “spin down”). We remark that our cognitive example shows that it might
be more natural to associate with each quantum state – wave function – its own
spin-observable. We introduce a similar observable for Bob, b = F, I.

9.3 Extensive Form Game with Imperfect Information

As was mentioned, formally the wine testing game is an extensive form game. How-
ever, we should point out one rather delicate feature of the game. We recall that a
complete extensive form representation specifies: 1) the players of a game; 2) for
every player every opportunity they have to move; 3) what each player can do at
each of their moves; 4) what each player knows for every move; 5) the payoffs
received by every player for every possible combination of moves.

Our game fulfills all those conditions except the fourth one. In fact, the action of
Alice does not specify for Bob the result of her action, Bob should guess the country
of origin of the wine served by Alice. To come to a conclusion, he should perform
a rather complicated analysis of the wine test. One may say that this is a game with
imperfect information.

We recall that an information set is a set of decision nodes such that: 1) every
node in the set belongs to one player; 2) when play reaches the information set, the
player with the move cannot differentiate between nodes within the information set,
i.e. if the information set contains more than one node, the player to whom that set
belongs does not know which node in the set has been reached.

If a game has an information set with more than one member, that game is said
to have imperfect information. A game with perfect information is such that at any
stage of the game, every player knows exactly what has taken place earlier in the
game, i.e. every information set is a singleton set. Any game without perfect infor-
mation has imperfect information.

However, there is a problem with the second condition determining the informa-
tion set. Of course, Bob does not know precisely which kind of wine is presented
for the test. In this sense the set of Bob’s nodes after Alice’s action (we consider the
first part of the game) forms an information set. But (and this is crucial) Bob has
the possibility to analyze wine (cf. with measurement process in quantum physics).
Therefore he might distinguish two actions of Alice, F and I, but only partially. I
have no idea whether such a problem of analysis of actions of the opposite player
has been discussed in game theory.
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9.3.1 Quantum-like Representation of the Wine Testing Game

The wine testing game has a natural QL representation. Let us consider a game with
restrictions on probabilities of strategies that make it possible to apply QLRA, see
Sect. 4.2: DS, PO, RC. By applying QLRA to statistical data we can construct a
probability amplitude ψC (β), β = F, I. By the condition RC such a context C is
trigonometric and the probability amplitude is complex valued. It can also be repre-
sented by a unit vector of the two-dimensional complex Hilbert space. We remark
that in principle there are no reasons for such an assumption. Unlike conventional
quantum games, the Wine Game may produce hyperbolic probability amplitudes.

In the trigonometric case we can represent the wins–losses averages in the QL
way:

Eb(C) = hb
F F ;1 |〈ψC , ea

F 〉|2 |〈eb
F , ea

F 〉|2 + hb
I F ;1 |〈ψC , ea

I 〉|2 |〈eb
F , ea

I 〉|2

+hb
F I ;1 |〈ψC , ea

F 〉|2 |〈eb
I , ea

F 〉|2 + hb
I I ;1 |〈ψC , ea

I 〉|2 |〈eb
I , ea

I 〉|2

+hb
F F ;2 |〈ψC , eb

F 〉|2 |〈eb
F , ea

F 〉|2 + hb
I F ;2 |〈ψC , eb

I 〉|2 |〈eb
I , ea

F 〉|2

+hb
F I ;2 |〈ψC , eb

F 〉|2 |〈eb
F , ea

I 〉|2 + hb
I I ;2 |〈ψC , eb

I 〉|2 |〈eb
I , ea

I 〉|2.

In the same way we represent the average for Alice. Thus the wine testing game
satisfying conditions DS, PO, RC can be represented in the complex Hilbert space.

The QL expression for the average is significantly simpler in the case of a zero
sum game with symmetry between the first and second parts: hb

F F ;1 = ha
F F ;2 =

−hb
F F ;2, . . . , hb

I I ;1 = ha
I I ;2 = −hb

I I ;2. Here

Eb(C) = hb
F F ;1(|〈ψC , ea

F 〉|2 |〈eb
F , ea

F 〉|2 − |〈ψC , eb
F 〉|2 |〈eb

F , ea
F 〉|2)

+hb
I F ;1(|〈ψC , ea

I 〉|2 |〈eb
F , ea

I 〉|2 − |〈ψC , eb
I 〉|2 |〈eb

I , ea
F 〉|2)

+hb
F I ;1(|〈ψC , ea

F 〉|2 |〈eb
I , ea

F 〉|2 − |〈ψC , eb
F 〉|2 |〈eb

F , ea
I 〉|2)

+hb
I I ;1 (|〈ψC , ea

I 〉|2 |〈eb
I , ea

I 〉|2 − |〈ψC , eb
I 〉|2 |〈eb

I , ea
I 〉|2)

= hb
F F ;1 |〈eb

F , ea
F 〉|2 (|〈ψC , ea

F 〉|2 − |〈ψC , eb
F 〉|2) + hb

I F ;1 |〈eb
F , ea

I 〉|2

(|〈ψC , ea
I 〉|2 − |〈ψC , eb

I 〉|2)

+hb
F I ;1 |〈eb

I , ea
F 〉|2 (|〈ψC , ea

F 〉|2 − |〈ψC , eb
F 〉|2) + hb

I I ;1 |〈eb
I , ea

I 〉|2

(|〈ψC , ea
I 〉|2 − |〈ψC , eb

I 〉|2)

= (|〈ψC , ea
F 〉|2−|〈ψC , eb

F 〉|2) (hb
F F ;1 |〈eb

F , ea
F 〉|2 + hb

F I ;1 |〈eb
I , ea

F 〉|2)

+(|〈ψC , ea
I 〉|2−|〈ψC , eb

I 〉|2) (hb
I F ;1 |〈eb

F , ea
I 〉|2 +hb

I I ;1 |〈eb
I , ea

I 〉|2).
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9.3.2 Superposition of Preferences

We now point out that we can expand e.g. vectors of the b-basis with respect to the
a-basis: eb

F = cF F ea
F + cF I ea

I , eb
I = cI F ea

F + cI I ea
I . One might say that “Bob’s

preferences are superpositions of Alice preferences.” However, we cannot assign
any real meaning to such a sentence in the present game framework. Thus super-
position is merely a purely mathematical representation – the geometric picture
of the probabilistic structure of the game. In the same way we can expand the
state ψC with respect to the a-basis as well as the b-basis. Such expansions do
not have any real meaning either, just geometrical representation of probabilities.
Nevertheless, such a picture is convenient for geometric representation of mental
states of Alice and Bob. One may use the following geometric model: there are
two basic mental states of Alice (in the context of the Wine Game) ea

F and ea
I . In

general Alice plays in the superposition of these states ψ = ca
F ea

F + ca
I ea

I . In the
same way Bob has two basic mental states eb

F and eb
I . In general Bob plays in the

superposition of these states ψ = cb
F eb

F + cb
I eb

I . Moreover, (at least mathemati-
cally) Bob’s mental states can be represented as superpositions of Alice’s mental
states.

We can represent the average of Bob’s wins–losses in the interference form

Eb(C) = (|〈ψC , ea
F 〉|2 − |c̄F F 〈ψC , ea

F 〉 + c̄F I 〈ψC , ea
I 〉|2 ) (hb

F F ;1 |〈eb
F , ea

F 〉|2

+hb
F I ;1 |〈eb

I , ea
F 〉|2)

+(|〈ψC , ea
I 〉|2−|c̄I F 〈ψC , ea

F 〉+c̄I I 〈ψC , ea
I 〉|2 ) (hb

I F ;1 |〈eb
F , ea

I 〉|2
+hb

I I ;1 |〈eb
I , ea

I 〉|2)

= (|〈ψC , ea
F 〉|2 − (|〈ψC , ea

F 〉|2|〈eb
F , ea

F 〉|2 + |〈ψC , ea
I 〉|2|〈eb

F , ea
I 〉|2

+2 cos θ |〈ψC , ea
F 〉〈eb

F , ea
F 〉〈ψC , ea

I 〉〈eb
F , ea

I 〉|)) (hb
F F ;1 |〈eb

F , ea
F 〉|2

+hb
F I ;1 |〈eb

I , ea
F 〉|2)

+(|〈ψC , ea
I 〉|2 − (|〈ψC , ea

F 〉|2|〈eb
I , ea

F 〉|2 + |〈ψC , ea
I 〉|2|〈eb

I , ea
I 〉|2

−2 cos θ |〈ψC , ea
F 〉〈eb

I , ea
F 〉〈ψC , ea

I 〉〈eb
I , ea

I 〉|) ) (hb
I F ;1 |〈eb

F , ea
I 〉|2

+hb
I I ;1 |〈eb

I , ea
I 〉|2).

9.3.3 Interpretation of Gambling Wave Function

The wave function ψC was constructed on the basis of probabilities: pa
C (α),

pa
C (β), pb|a

β|α. It represents the wine collection of the restaurant as well as preferences
of Alice and Bob. Moreover, it also represents their abilities to find the difference
between French and Italian wines.
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Thus one may say such a wave function (complex probability amplitude) ψC has
no real counterpart. We could not point to any object in reality that is represented by
ψC . It represents the context of the wine collection as well as Bob’s and Alice’s pref-
erences and experiences with different kinds of wines. Such a context is extremely
complex. It is impossible to describe its precisely. However, the ψC provides some
approximative representation of this context in the complex Hilbert space.

We note that Alice and Bob are coupled through the wave function. The wave
function really provides a way to combine probabilistic features of two cognitive
systems, Alice and Bob, which could not be incorporated into a single Kolmogorov
probability space.

9.3.4 The Role of Bayes Formula

Suppose for the moment that the randomness of actions of Alice and Bob can be
described by the Kolmogorov probability space P = (Ω,F , P) in the following
way:

a) The wine-collection context C is represented by an element of F , which will be
denoted by the same symbol.

b) Probabilities

pa
C (α) = PC (Cα) ≡ P(Cα ∩ C)

P(C)
, pb

C (β) = PC (Cβ) ≡ P(Cβ ∩ C)

P(C)
,

where

Cα = {ω ∈ Ω : a(ω) = α}, Cβ = {ω ∈ Ω : b(ω) = β}.

Here PC is the conditional probability measure corresponding to the subset C of
F : PC (A) = P(A ∩ C)/P(C).

c) The b|a-contextual probabilities

pb|a
β|α = PC (Cβ |Cα) ≡ P(Cβ ∩ Cα ∩ C)

P(Cα ∩ C)
.

In such a representation the C-conditional Bayes formula holds:

PC (Cα ∩ Cβ) = PC (Cα)PC (Cβ |Cα). (9.2)

Hence, here the equality (9.1) holds! (Because the Kolmogorovian probability is
symmetric: PC (Cα ∩ Cβ) = PC (Cβ ∩ Cα).) We obtain the following equality:

PC (Cα)PC (Cβ |Cα) = PC (Cβ)PC (Cα|Cβ). (9.3)
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Since we want the QL representation, we consider symmetrically conditioned vari-
ables a and b, see Sect. 3.1.3 – so the condition SC holds: (2.18). The condition
(9.3) implies that

PC (Cα) = PC (Cβ) = 1/2. (9.4)

Thus one can construct a Kolmogorov representation of the Wine Game satisfying
conditions a)–c) iff selection of wines from the collection is uniformly distributed
between French and Italian wines (for both Alice and Bob). If not, then a single
Kolmogorov space does not exist. For example, if the probability that Alice chooses
a bottle of French wine pa

C (F) = 1/3 (and consequently the probability that she
chooses a bottle of Italian wine pa

C (I ) = 2/3), then it is impossible to construct a
Kolmogorov probability space for this game. Of course, one should not forget that
we assumed that the game probabilities are coupled to the Kolmogorov space via
conditions a)–c) and that we would like to have symmetric transition probabilities.
The origin of this nonclassicality of the probabilistic description is the impossibility
to combine on a single Kolmogorov space preferences of Alice and Bob in choos-
ing wines and their abilities to test wines. By using Gudder’s theory of probability
manifolds [126, 127] we can say that we have a probability manifold with the atlas
having two charts, one serves for the first part of game and another for the second.

We remark that the choice c) of the b|a-contextual probabilities implies immedi-
ately that the coefficients of interference λ are equal to zero.

9.3.5 Action at a Distance?

One can consider a more advanced Wine Game involving facelogy: Bob can extract
some information about the origin of the wine by observing the behavior of Alice
after she has made her choice. Using the terminology of quantum mechanics one can
talk about “action at a distance.” However, even if such action is present in the game
it is not instantaneous! Everything happens in complete accordance with the laws of
special relativity: light is reflected from Alice’s face and Bob obtains information
only when the light wave reaches his eyes.

Consideration of QL games of the facelogy-type extends essentially the range
of possible applications of our model. However, we do not couple directly such
action at a distance with essentially nonclassical probabilistic structure. The origin
of nonclassicality is the impossibility of combining all possible preferences in a
single probability space.

9.4 Wine Game with Three Players

We now generalize the Wine Game by considering three players, Alice, Bob,
Cecilia. The first part: Alice chooses a bottle, Bob tests; the second part: Bob
chooses, Cecilia tests, and the third part: Cecilia chooses, Alice tests. We shall
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use probabilities with indexes a, b, c corresponding to Alice, Bob, Cecilia. For
each part of the game we fix payment matrices. We consider a symmetric game.
We can write averages: for the first part Eb

1 (C)(= −Ea
1 (C)), for the second part

Ec
2(C)(= −Eb

2 (C)), and for the third part Ea
3 (C)(= −Ec

3(C)).
We assume that conditions DS, PO, RC, Sect. 4.2, which guarantee the possi-

bility of applying QLRA, hold for all pairs of observables. Thus we apply QLRA
to the probabilities corresponding to the pair a, b. We obtain the complex proba-
bility amplitude ψC ;b|a, which belongs to the two-dimensional Hilbert space that is
denoted Hb|a . Observables a, b are represented by self-adjoint operators â, b̂, which
have bases of eigenvectors {ea;b|a

α }, {eb;b|a
β }. We also apply QLRA to the probabili-

ties corresponding to the pair b, c. We obtain a new complex probability amplitude
ψC ;c|b, which belongs to the two-dimensional Hilbert space that is denoted Hc|b.
Observables b, c are represented by self-adjoint operators b̂, ĉ, which have bases of
eigenvectors {eb;c|b

β }, {ec;c|b
γ }. Finally, consider the Ha|b-representation.

These representations can be identified with the aid of unitary maps:

U c|b
b|a : Hb|a → Hc|b, eb;b|a

β → eb;c|b
β ,

and

U a|c
c|b : Hc|b → Ha|c, ec;c|b

γ → ec;a|c
γ .

The crucial point is that U c|b
b|a (ψC ;b|a) = ψC ;c|b and U a|c

c|b (ψC ;c|b) = ψC ;a|c. Therefore
we can identify complex probability amplitudes ψC ;b|a, ψC ;c|b, ψC ;a|c and consider
a unit vector ψC as representing the wine collection and preferences of Alice, Bob
and Cecilia. We shall come back to this game little bit later.

We remark that this game has the structure of Gudder’s probability manifold with
the atlas having three charts.

9.5 Simulation of the Wine Game

Typically quantum probabilities are imagined as rather mysterious things. Absence
of the underlying Kolmogorov space may only support such a viewpoint. However,
by using the frequency (von Mises) approach quantum probabilities can be easily
simulated. One need not use special “quantum coins” given by sources of photons
or electrons. We simulate our game by using the following system of dichotomous
random generators (taking values F and I):

ga, gb, gb|a(α), ga|b(β).

Here ga and gb simulate choices of wine from the collection C (by Alice and Bob,
respectively); the frequencies of F and I approach the corresponding probabilities
pa

C (F), pa
C (I ), pb

C (F), pb
C (I ) when the number of trials goes to infinity. The gen-

erator gb|a(α) describes the ability of Bob to analyze the wine’s origin under the
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condition that Alice selects a bottle of α-origin. For example, the generator gb|a(F)
takes the value F if Bob correctly recognized French wine (which was chosen by
Alice). The generator ga|b(β) has a similar meaning.

Now, to simulate the Wine Game, we just apply these generators consequently in
the right order, e.g., first ga and if it takes the value F, then the generator gb|a(F).
That’s all! We shall simulate probabilities and payoffs given by the two-dimensional
QL model.

In all previous considerations we started with some collection of probabilities
and transition probabilities, and under the conditions DS, PO, RC we were able
to represent the Wine Game in the two-dimensional complex Hilbert space. By
applying QLRA we constructed the wave function and operators â, b̂.

We can also proceed in the opposite way. We can take two noncommutative oper-
ators in the two-dimensional Hilbert space, say â and b̂, and a normalized vector ψ

in this space. Then we find (by using Born’s rule) all the probabilities that we need
for the Wine Game. Those probabilities will automatically satisfy conditions DS,
PO, RC. Finally, we can simulate the Wine Game by using the above scheme.

This strategy is especially convenient for generalizations of the Wine Game to
spaces of high dimension. QLRA becomes very complicated, see [214]. Recon-
struction of the wave function is not a simple task. Therefore one can start just
with probabilities, which are obtained from the mathematical formalism of quantum
mechanics. Moreover, the possibility of applying QLRA is restricted by a number of
conditions. One can ignore these conditions by starting directly with a normalized
vector ψ.

9.6 Bell’s Inequality for Averages of Payoffs

We now come back to the Wine Game with three players, Alice, Bob, Cecilia. We
shall use the pragmatic strategy proposed at the end of the previous section. We take
probabilities and operators corresponding to a known quantum system and simulate
the Wine Game on the basis of these probabilities. We emphasize that we take prob-
abilities given by the mathematical apparatus of quantum mechanics and not at all
a quantum physical system by itself. We introduce a game parameter θ ∈ [0, 2π ).
Alice is characterized by θ = θ1, Bob by θ = θ2, Cecilia by θ = θ3. We take the
transition probabilities corresponding to the “spin-1/2 system.” For the first part of
the game we have

pb|a
F |F = pb|a

I |I = cos2 θ1 − θ2

2
;

pb|a
I |F = pb|a

F |I = sin2 θ1 − θ2

2
.

The “transition probabilities” for other parts of the game are defined in a similar
way, e.g.,
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pc|b
F |F = pc|b

I |I = cos2 θ2 − θ3

2
.

Let us choose the following matrix of payoffs:

hF F = hI I = +1, hI F = hF I = −1.

Let us now suppose that Alice, Bob and Cecilia select wine from the collection by
using uniform random generators: pa

C (α) = pb
C (β) = pc

C (γ ) = 1/2. We now find
the average for Bob’s wins–losses in the first part of the Wine Game:

Eb
1 ≡ E(θ1, θ2) = cos2 θ1 − θ2

2
− sin2 θ1 − θ2

2
= cos(θ1 − θ2). (9.5)

In the same way we have for Cecilia

Ec
2 ≡ E(θ2, θ3) = cos(θ2 − θ3) (9.6)

and finally for Alice

Ea
3 ≡ E(θ3, θ1) = cos(θ3 − θ1). (9.7)

We set now F = +1 and I = −1. In this notation both observables a and b take the
values ±1. We proceed inside the contextual probabilistic model MWG. Averages,
see (3.4) in Sect. 3.1.1, āC and b̄C are equal to zero. Thus averages for wins–losses
are nothing other than corresponding covariances, see (3.9) in Sect. 3.1.4:

Eb
1 = covC (a, b), Ec

2 = covC (c, b), Ea
3 = covC (c, a).

These covariances are taken with respect to probabilities pab
C , pbc

C , pca
C . We now ask:

Can one construct a probability measure P and realize observables a, b, c by
random variables on the corresponding Kolmogorov space in such a way that

P(a = α, b = β) = pab
C (a = α, b = β), P(b = β, c = γ ) = pbc

C (b = β, c = γ ),
(9.8)

P(c = γ, a = α) = pca
C (c = γ, a = α)? (9.9)

The answer is negative. If representations (9.8), (9.9) can be constructed, then
one can prove Bell’s inequality, see Sect. 2.2.2, Theorem 2.2:

|covC (a, b) − covC (b, c)| ≤ 1 − covC (c, a). (9.10)

Bell’s inequality is violated for covariances given by (9.5)–(9.7) for some choices
of parameters.
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If there were a classical probabilistic model behind the Wine Game (for some
set of probabilities), then averages of payments would satisfy the following Bell’s
inequality:

|Eb
1 − Ec

2| ≤ 1 − Ea
3 . (9.11)

Even intuitively it is clear that there are no reasons to assume that this inequality
should hold for any set of probabilities.

The expression on the left-hand side of the Bell’s inequality is equal to the aver-
age of the total wins–losses of Bob in the game (i.e., in the two series of games –
with Alice and Cecilia, in the first Bob tests wine and the second Cecilia does this):
Eb = Eb

1 + Eb
2 = Eb

1 − Ec
2 = cos(θ1 − θ2) − cos(θ2 − θ3).

Finally, we remark that the Wine Game can be generalized to the Hilbert space H
of an arbitrary dimension. The only difference is that now the collection C contains
wines from n countries, which are labeled by i = 1, . . . , n.

Let us consider two self-adjoint operators â and b̂ and the corresponding orthonor-
mal bases of eigenvectors {ea

i }n
i=1 and {eb

j }n
j=1. In principle, operators could even

commute. Of course, QLRA would not work in such a case. But our task is not to
reconstruct probabilities from the game, but only to simulate the game.

We also take a normalized vector ψ ∈ H. This vector ψ describes collections
of wines created by Alice and Bob as well as their experiences of testing of wines.
Actions of Alice and Bob are now labeled by i = 1, . . . , n. The tree of this extensive
form game has n nodes leaving this vertex. Bob’s average is given by

Eb =
n∑

i, j=1

hb
ji ;1 |〈ψC , ea

j 〉〈eb
i , ea

j 〉|2 +
n∑

i, j=1

hb
i j ;2 |〈ψC , eb

i 〉〈eb
i , ea

j 〉|2.



Chapter 10
Psycho-financial Model

This chapter presents a model that was proposed by Olga Choustova and me
[53–62, 175]. She applied methods of quantum mechanics to mathematical modeling
of price dynamics in the financial market. She pointed out that behavioral financial
factors (e.g., expectations of traders) could be described by using the pilot wave
(Bohmian) model of quantum mechanics; see Section 12.6 for a brief introduction
to the mathematical formalism of Bohmian mechanics.

Trajectories of prices are determined by two financial potentials: classical-like
V (t, q) (“hard” market conditions, e.g., natural resources) and QL U (t, q) (behav-
ioral market conditions).

On the one hand, our Bohmian model is a QL model for the financial market,
cf. publications of Segal and Segal [274], Baaquie [22, 23], Haven [132–135],
Piotrowski et al. [252–258], and Danilov and Lambert-Mogiliansky [73–76].

On the other hand (since Bohmian mechanics provides the possibility of describ-
ing individual price trajectories), it belongs to the domain of extensive research on
deterministic dynamics for financial assets (Granger [122], Barnett and Serletis [28],
Benhabib [34], Brock and Sayers [43], Campbell et al. [52], Hsieh [152], and many
others).

10.1 Deterministic and Stochastic Models of Financial Markets

10.1.1 Efficient Market Hypothesis

In economics and financial theory, analysts use random walks and more general mar-
tingale techniques to model the behavior of asset prices, in particular share prices
on stock markets, currency exchange rates and commodity prices. This practice has
its basis in the presumption that investors act rationally and without bias, and that
at any moment they estimate the value of an asset based on future expectations.
Under these conditions, all existing information affects the price, which changes
only when new information comes out. By definition, new information appears
randomly and influences the asset price randomly. Corresponding continuous time
models are based on stochastic processes (this approach was initiated in the thesis

A. Khrennikov, Ubiquitous Quantum Structure,
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of Bachelier [24] in 1890), see, e.g., the books of Mantegna and Stanley [237] and
Shiryaev [281] for historical and mathematical details.

This practice was formalized through the efficient market hypothesis, which was
formulated in the 1960s, see Samuelson [269, 270] and Fama [103] for details:

A market is said to be efficient in the determination of the most rational price if
all the available information is instantly processed when it reaches the market and
it is immediately reflected in a new value of prices of the assets traded.

The efficient market hypothesis was supported by statistical investigations of
Samuelson [269]. Mathematically the efficient markets hypothesis means that finan-
cial markets can be described by classical stochastic processes and they are of a very
special type, namely, so-called martingales.

10.1.2 Deterministic Models for Dynamics of Prices

First we remark that empirical studies have demonstrated that prices do not com-
pletely follow a random walk. Low serial correlations (around 0.05) exist in the
short term and slightly stronger correlations over the longer term. Their sign and the
strength depend on a variety of factors, but transaction costs and bid–ask spreads
generally make it impossible to earn excess returns. Interestingly, researchers have
found that some of the biggest price deviations from a random walk result from
seasonal and temporal patterns, see [237].

There are also a variety of arguments, both theoretical and obtained on the basis
of statistical analysis of data, that question the general martingale model (and hence
the efficient market hypothesis), see, e.g., [122, 28, 34, 52, 152]. It is important
to note that efficient markets imply there are no exploitable profit opportunities. If
this is true then trading on the stock market is a game of chance and not of any
skill, but traders buy assets they think are undervalued in the hope of selling them at
their true price for a profit. If market prices already reflect all available information,
then where does the trader draw this privileged information from? Since there are
thousands of very well informed, well-educated asset traders, backed by many data
researchers, buying and selling securities quickly, logically assets markets should
be very efficient and profit opportunities should be minimal. On the other hand,
we see that there are many traders who successfully use their opportunities and
continuously carry out very successful financial operations; see the book by Soros
[282] for discussion.1 Intensive investigations testing whether real financial data
can be really described by the martingale model, have also been performed, see
[122, 28, 34, 52, 152]. Roughly speaking, people try to understand the following on
the basis of available financial data:

Do financial asset returns behave randomly (hence unpredictably) or determin-
istically (in which case one may hope to predict them and even to construct a
deterministic dynamical system which would at least mimic the dynamics of the
financial market)?

1 It seems that Soros is sure he does not work at efficient markets.
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Predictability of financial asset returns is a broad and very active research topic
and a complete survey of the vast literature is beyond the scope of this work. We
note, however, that there is a rather general opinion that financial asset returns are
predictable, see [122, 28, 34, 52, 152].

10.1.3 Behavioral Finance and Economics

We point out that there is no general consensus on the validity of the efficient mar-
ket hypothesis. As is pointed out in [52]: “. . . econometric advances and empirical
evidence seem to suggest that financial asset returns are predictable to some degree.
Thirty years ago this would have been tantamount to an outright rejection of market
efficiency. However, modern financial economics teaches us that other, perfectly
rational factors may account for such predictability. The fine structure of securities
markets and frictions in trading process can generate predictability. Time-varying
expected returns due to changing business conditions can generate predictability. A
certain degree of predictability may be necessary to reward investors for bearing
certain dynamic risks.”

Therefore it would be natural to develop approaches which are not based on the
assumption that investors act rationally and without bias and that, consequently, new
information appears randomly and influences the asset price randomly. In particular,
there are two well established (and closely related ) fields of research, behavioral
finance and behavioral economics, which apply scientific research on human and
social cognitive and emotional biases2 to better understand economic decisions and
how they affect market prices, returns and the allocation of resources. The fields
are primarily concerned with the rationality, or lack thereof, of economic agents.
Behavioral models typically integrate insights from psychology with neo-classical
economic theory. Behavioral analysis is mostly concerned with the effects of market
decisions, but also those of public choice, another source of economic decisions with
some similar biases.

Since the 1970s, the intensive exchange of information in the world of finances
has become one of the main factors determining the dynamics of prices. Electronic
trading (which has become the most important part of the environment of the major
stock exchanges) induces huge information flows between traders (including the for-
eign exchange market). Financial contracts are made on a new time scale that differs
essentially from the old “hard” time scale that was determined by the development
of the economic basis of the financial market. Prices at which traders are willing

2 Cognitive bias is any of a wide range of observer effects identified in cognitive science, including
very basic statistical and memory errors that are common to all human beings and drastically
skew the reliability of anecdotal and legal evidence. They also significantly affect the scientific
method, which is deliberately designed to minimize such bias from any one observer. They were
first identified by Amos Tversky and Daniel Kahneman as a foundation of behavioral economics,
see, e.g., [293]. Bias arises from various life, loyalty and local risk and attention concerns that are
difficult to separate or codify. Tversky and Kahneman claim that they are at least partially the result
of problem-solving using heuristics, including the availability heuristic and the representativeness.
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to buy (bid quotes) or sell (ask quotes) a financial asset are not only determined
by the continuous development of industry, trade, services, the situation on the
market of natural resources and so on. Information (mental, market-psychological)
factors play a very important (and in some situations crucial) role in price dynamics.
Traders performing financial operations work as a huge collective cognitive system.
Roughly speaking, classical-like dynamics of prices (determined) by “hard” eco-
nomic factors are permanently perturbed by additional financial forces, mental (or
market-psychological) forces, see the book [282].

10.1.4 Quantum-like Model for Behavioral Finance

Olga Choustova has developed a new approach that is not based on the assumption
that investors act rationally and without bias and that, consequently, new informa-
tion appears randomly and influences the asset price randomly. Her approach can
be considered as a special econophysical [237] model in the domain of behavioral
finance. In her approach information about the financial market (including expecta-
tions of agents of the financial market) is described by an information field ψ(t, q) –
a financial wave. This field evolves deterministically, perturbing the dynamics of
prices of stocks and options. The dynamics is given by Schrödinger’s equation on
the space of prices of shares. Since the psychology of agents of the financial market
makes an important contribution to the financial wave ψ(t, q), our model can be
considered as a special psycho-financial model.

Choustova’s model can be also considered as a contribution to applications of
quantum mechanics outside the microworld, see [8, 161, 173, 176]. Her model is
fundamentally based on investigations by Bohm, Hiley, and Pylkkänen [40, 144] of
the active information interpretation of Bohmian mechanics and its applications to
cognitive sciences, see also [176].

In her model Choustova used methods of Bohmian mechanics to simulate dynam-
ics of prices on the financial market. She started with the development of the clas-
sical Hamiltonian formalism on the price/price-change phase space to describe the
classical-like evolution of prices. This classical dynamics of prices is determined by
“hard” financial conditions (natural resources, industrial production, services and
so on). These conditions, as well as “hard” relations between traders at the financial
market, are mathematically described by the classical financial potential. At the real
financial market “hard” conditions are not the only source of price changes. Infor-
mation and market psychology play an important (and sometimes determining) role
in price dynamics.

Choustova proposed that these “soft” financial factors be described by using the
pilot wave (Bohmian) model of quantum mechanics. The theory of financial men-
tal (or psychological) waves was used to take into account market psychology. In
Choustova’s model the real trajectories of prices are determined (by the financial
analogue of the second Newton law) by two financial potentials: classical-like
(“hard” market conditions) and QL (“soft” market conditions).
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This QL model of financial processes was strongly motivated by consideration by
Soros [282] of the financial market as a complex cognitive system. Such an approach
he called the theory of reflexivity. In this theory there is a large difference between
market that is “ruled” by only “hard” economical factors and a market where mental
factors play a crucial role (even changing the evolution of the “hard” basis, see
[282]).

Soros rightly remarked that the “nonmental” market evolves due to classical ran-
dom fluctuations. However, such fluctuations do not provide an adequate descrip-
tion of the mental market. He proposed that an analogy with quantum theory be
used. However, it was noticed that quantum formalism could not be applied directly
to the financial market [282]. Traders differ essentially from elementary particles.
Elementary particles behave stochastically due to perturbation effects provided by
measurement devices.

According to Soros, traders at the financial market behave stochastically due to
free will of individuals. Combinations of a huge number of free wills of traders pro-
duce additional stochasticity at the financial market that could not be reduced to clas-
sical random fluctuations (determined by nonmental factors). Here Soros followed
the conventional (Heisenberg, Bohr, Dirac) view of the origin of quantum stochas-
ticity. However, in the Bohmian approach (that is the nonconventional one) quantum
statistics is induced by the action of an additional potential, the quantum potential,
that changes classical trajectories of elementary particles. Such an approach pro-
vides the possibility of applying quantum formalism to the financial market.

We remark that applications of the pilot-wave theory to financial option pricing
were considered by Haven in [136]. There were also numerous investigations on
applying quantum methods to the financial market, see, e.g., [132, 135], that were
not directly coupled to behavioral modeling, but based on the general concept that
randomness of the financial market can be better described by quantum mechanics,
see, e.g., Segal and Segal [274]: “A natural explanation for extreme irregularities in
the evolution of prices in financial markets is provided by quantum effects.” Non-
Bohmian quantum models for the financial market (in particular, based on quantum
games) were developed by Piotrowski, Sladkowski, and coworkers, see [252, 254].
Some of those models can also be considered as behavioral QL models.

An interesting contribution to behavioral QL modeling is the theory of nonclassi-
cal measurements in behavioral sciences (with applications to economics) that was
developed by Danilov and Lambert-Mogiliansky [73, 74].

10.2 Classical Econophysical Model of the Financial Market

10.2.1 Financial Phase Space

Let us consider a mathematical model in which a huge number of agents of the finan-
cial market interact with one another and take into account external economic (as
well as political, social and even meteorological) conditions in order to determine
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the price to buy or sell financial assets. We consider the trade with shares of some
corporations (e.g., Volvo, Saab, Ikea,. . . ).3

We consider a price system of coordinates. We enumerate corporations that
emitted shares in the financial market under consideration: j = 1, 2, . . . ., n (e.g.,
Volvo: j = 1, Saab: j = 2, Ikea: j = 3,. . . ). Introduce the n-dimensional configura-
tion space Q = Rn of prices, q = (q1, . . . , qn), where q j is the price of a share of
the j th corporation. Here R is the real line. The dynamics of prices is described by
the trajectory q(t) = (q1(t), . . . , qn(t)) in the configuration price space Q.

Another variable under consideration is the price change variable:

v j (t) = q̇ j (t) = lim
Δt→0

q j (t + Δt) − q j (t)

Δt
,

see, for example, the book [237] on the role of the price change description. In
real models we consider the discrete time scale Δt, 2Δt, . . . . Here we should use a
discrete price change variable δq j (t) = q j (t + Δt) − q j (t).

We denote the space of price changes (price velocities) by the symbol V (≡ Rn)
with coordinates v = (v1, . . . , vn). As in classical physics, it is useful to introduce
the phase space Q × V = R2n, namely the price phase space. A pair (q, v) = (price,
price change) is called the state of the financial market.

Later we shall consider QL states of the financial market. The state (q, v) that we
consider at the moment is a classical state.

We now introduce an analogue m of mass as the number of items (in our case
shares) that a trader emitted to the market.4 We call m the financial mass. Thus
each trader j (e.g., Volvo) has its own financial mass m j (the size of the emission of
its shares). The total price of the emission of the j th trader is equal to Tj = m j q j

(this is nothing other than market capitalization). Of course, it depends on time:
Tj (t) = m j q j (t). To simplify considerations, we consider a market in which any
emission of shares is of fixed size, so m j does not depend on time. In principle,
our model can be generalized to describe a market with time-dependent financial
masses, m j = m j (t).

We also introduce financial energy of the market as a function H : Q × V → R.

Let us use the analogy with classical mechanics. (Why not? In principle, there is not
so much difference between motions in “physical space” and “price space”.) In this
case we could consider (at least for mathematical modeling) the financial energy of
the form

3 Similar models can be developed for trade with options, see Haven [136] for the Bohmian finan-
cial wave model for portfolios.
4 ‘Number’ is a natural number m = 0, 1, . . . , the price of share, e.g., in US dollars. However, in
a mathematical model it can be convenient to consider real m. This can be useful for conversions
from one currency to another.
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H (q, v) = 1

2

n∑

j=1

m jv
2
j + V (q1, . . . , qn). (10.1)

Here K (q, v) = 1/2
∑n

j=1 m jv
2
j is the kinetic financial energy and V (q1, . . . , qn)

is the potential financial energy; m j is the financial mass of the j th trader.
The kinetic financial energy represents efforts of agents of the financial market to

change prices: higher price changes induce higher kinetic financial energies. If the
corporation j1 has higher financial mass than the corporation j2, so m j1 > m j2 , then
the same change of price, i.e., the same financial velocity v j1 = v j2 , is characterized
by higher kinetic financial energy: K j1 > K j2 . We also remark that high kinetic
financial energy characterizes rapid changes of the financial situation at the market.
However, the kinetic financial energy does not give the sign of these changes. It
could be rapid economic growth as well as recession.

The potential financial energy V describes the interactions between traders
j = 1, . . . ., n (e.g., competition between Nokia and Ericsson) as well as exter-
nal economic conditions (e.g., the price of oil and gas) and even meteorological
conditions (e.g., the weather conditions in Louisiana and Florida). For example, we
can consider the simplest interaction potential:

V (q1, . . . , qn) =
n∑

j=1

(qi − q j )
2.

The difference |q1 − q j | between prices is the most important condition for arbi-
trage.

We could never take into account all economic and other conditions that influence
the market. Therefore by using some concrete potential V (t, q) we consider a very
idealized model of financial processes. However, such an approach is standard for
physical modeling, where we also consider idealized mathematical models of real
physical processes.

10.2.2 Classical Dynamics

We apply Hamiltonian dynamics on the price phase space. As in classical mechanics
for material objects, we introduce a new variable p = mv, the price momentum
variable. Instead of the price change vector v = (v1, . . . , vn), we consider the price
momentum vector p = (p1, . . . , pn), p j = m jv j . The space of price momenta is
denoted by the symbol P. The space Ω = Q × P will also be called the price
phase space. Hamiltonian equations of motion on the price phase space have the
form q̇ = ∂ H/∂p j , ṗ j = −∂ H/∂q j , j = 1, . . . , n.

If the financial energy has the form (10.1) then the Hamiltonian equations have
the form

q̇ j = p j

m j
= v j , ṗ j = − ∂V

∂q j
.
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The latter equation can be written as

m j v̇ j = − ∂V

∂q j
.

It is natural to call the quantity

v̇ j = lim
Δt→0

v j (t + Δt) − v j (t)

Δt

the price acceleration (rate of change of price rate of change). The quantity

f j (q) = − ∂V

∂q j

is called the (potential) financial force. We get the financial variant of Newton’s
second law:

mv̇ = f (10.2)

Law 10.1. The product of the financial mass and the price acceleration is equal
to the financial force.

In fact, the Hamiltonian evolution is determined by the following fundamental
property of the financial energy: The financial energy is not changed in the process
of Hamiltonian evolution:

H (q1(t), . . . , qn(t), p1(t), . . . , pn(t) = H (q1(0), . . . qn(0), p1(0), . . . , pn(0)).

We need not restrict our considerations to financial energies of form (10.1). First
of all external (e.g. economic) conditions as well as the character of interactions
between traders at the market depend strongly on time. This must be taken into
account by considering time-dependent potentials:

V = V (t, q).

Moreover, the assumption that the financial potential depends only on prices,
V = V (t, q), is not so natural for the modern financial market. Financial agents
have complete information on price changes. This information is taken into account
by traders for acts of arbitrage, see [237] for details. Therefore, it can be useful to
consider potentials that depend not only on prices, but also on price changes: V =
V (t, q, v), or in the Hamiltonian framework: V = V (t, q, p). In such a case the
financial force is not potential. Therefore, it is also useful to consider the financial
Newton’s second law for general financial forces: mv̇ = f (t, q, p).
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Remark 10.1 (On the form of the kinetic financial energy) We copied the form of
kinetic energy from classical mechanics for material objects. It may be that such a
form of kinetic financial energy is not justified by a real financial market. It might
be better to consider our choice of the kinetic financial energy as just the basis for
mathematical modeling (and look for other possibilities).

Remark 10.2 (Domain of price dynamics) It is natural to consider a model in which
all prices are nonnegative, q j (t) ≥ 0. Therefore financial Hamiltonian dynamics
should be considered in the phase space Ω+ = Rn

+ × Rn, where R+ is the set of
nonnegative real numbers. We shall not study this problem in detail, because our aim
is the study of the corresponding quantum dynamics, but in the quantum case this
problem is solved easily. One should just consider the corresponding Hamiltonian in
the space of square integrable functions L2(Ω+). Another possibility in the classical
case is to consider centered dynamics of prices: z j (t) = q j (t) − q(0). The centered
price z j (t) evolves in the configuration space Rn.

10.2.3 Critique of Classical Econophysics

The model of Hamiltonian price dynamics on the price phase space can be use-
ful to describe a market that depends only on “hard” economic conditions: natural
resources, volumes of production, human resources and so on. However, the classi-
cal price dynamics cannot be applied (at least directly) to modern financial markets.
It is clear that the stock market is not based only on these “hard” factors. There are
other factors, soft ones (behavioral), that play an important (and sometimes even
determining) role in forming of prices at the financial market. Market psychology
should be taken into account. Negligibly small amounts of information (due to the
rapid exchange of information) imply large changes of prices at the financial market.
We can consider a model in which financial (psychological) waves are permanently
present at the market. Sometimes these waves produce uncontrollable changes of
prices disturbing the whole market (financial crashes). Of course, financial waves
also depend on “hard economic factors.” However, these factors do not play a cru-
cial role in the formation of financial waves. Financial waves are merely waves of
information.

We could compare the behavior of a financial market with the behavior of a
gigantic ship that is ruled by a radio signal. A radio signal with negligibly small
physical energy can essentially change (due to information contained in this signal)
the motion of the gigantic ship. If we do not pay attention to (do not know about the
presence of) the radio signal, then we will be continuously surprised by the ship’s
behavior. It can change its direction of motion without any ”hard” reason (weather,
destination, technical state of ship’s equipment). However, if we know about the
existence of radio monitoring, then we could find information that is sent by radio.
This would give us a powerful tool to predict the ship’s trajectory. This example on
ship’s monitoring was taken from the book by Bohm and Hiley [40] on so-called
pilot wave quantum theory (or Bohmian quantum mechanics).
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10.3 Quantum-like Econophysical Model of the Financial Market

10.3.1 Financial Pilot Waves

If we interpret the pilot wave as a field, then it is a rather strange field. It differs
crucially from “ordinary physical fields,” i.e., the electromagnetic field. We mention
some of the pathological features of the pilot wave field. In particular, the force
induced by this pilot wave field does not depend on the amplitude of the wave.
Thus small waves and large waves equally disturb the trajectory of an elementary
particle. Such features of the pilot wave make it possible to speculate [40] that
this is just a wave of information (active information). Hence, the pilot wave field
describes the propagation of information. The pilot wave is more similar to a radio
signal that guides a ship. Of course, this is just an analogy (because a radio signal is
related to an ordinary physical field, namely, the electromagnetic field). The more
precise analogy is to compare the pilot wave with information contained in the radio
signal.

We remark that the pilot wave (Bohmian) interpretation of quantum mechanics
is not the conventional one. A few critical arguments against Bohmian quantum
formalism can be mentioned:

1. Bohmian theory makes it possible to provide a mathematical description of the
trajectory q(t) of an elementary particle. However, such a trajectory does not
exist according to conventional quantum formalism.

2. Bohmian theory is not local, namely, by means of the pilot wave field one particle
“feels” another at large distances.

We say that these disadvantages of the theory will become advantages in our
applications of Bohmian theory to the financial market. We also recall that Bohm
and Hiley [40] and Hiley and Pilkkänen[144] have already discussed the possibility
of interpreting the pilot wave field as a kind of information field. This information
interpretation was essentially developed in my work, see, e.g., [176] devoted to pilot
wave cognitive models.

Our fundamental assumption is that agents of the modern financial market are
not just “classical-like agents.” Their actions are ruled not only by classical-like
financial potentials V (t, q1, . . . , qn), but also (in the same way as in the pilot wave
theory for quantum systems) by an additional information (or psychological) poten-
tial induced by a financial pilot wave.

Therefore we cannot use classical financial dynamics (Hamiltonian formalism)
on the financial phase space to describe the real price trajectories. Information (psy-
chological) perturbation of Hamiltonian equations for price and price change must
be taken into account. To describe such a model mathematically, it is convenient to
use an object such as a financial pilot wave that rules the financial market.

In some sense ψ(t, q) describes the psychological influence of the price config-
uration q on the behavior of agents of the financial market. In particular, ψ(t, q)
contains the expectations of agents.
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We point out two important features of the financial pilot wave model:

1. All shares are coupled on the information level. The general formalism of the
pilot wave theory says that if the function ψ(t, q1, . . . , qn) is not factorized, i.e.,

ψ(t, q1, . . . , qn) �= ψ1(t, q1) . . . ψn(t, qn),

then any change in the price qi will automatically change the behavior of all
agents of the financial market (even those who have no direct coupling with i-
shares). This will imply a change in prices of j-shares for i �= j. At the same time
the “hard” economic potential V (q1, . . . , qn) need not contain any interaction
term.

For example, let us consider for the moment the potential V (q1, . . . , qn) =
q2

1 + . . . + q2
n . The Hamiltonian equations for this potential – in the absence of

the financial pilot wave – have the form: q̇ j = p j , ṗ j = −2q j , j = 1, 2, . . . , n.

Thus the classical price trajectory q j (t), does not depend on the dynamics of
prices of shares for other traders i �= j (for example, the price of Ericsson shares
does not depend on the price of Nokia shares and vice versa).5

However, if, for example, the wave function has the form

ψ(q1, . . . , qn) = cei(q1q2+...+qn−1qn )e−(q2
1 +...+q2

n ),

where c ∈ C is some normalization constant, then financial behavior of agents
of the financial market is nonlocal (see further considerations).

2. Reactions of the market do not depend on the amplitude of the financial pilot
wave: waves ψ, 2ψ, 100000ψ will produce the same reaction. Such a behav-
ior of the market is quite natural (if the financial pilot wave is interpreted as
an information wave, the wave of financial information). The amplitude of an
information signal does not play so large a role in information exchange. Most
important is the context of such a signal. The context is given by the shape of the
signal, the form of the financial pilot wave function.

10.3.2 Dynamics of Prices Guided by Financial Pilot Wave

In fact, we do not need to develop a new mathematical formalism. We will just
apply the standard pilot wave formalism to the financial market. The fundamental
postulate of the pilot wave theory is that the pilot wave (field)

ψ(t, q1, . . . , qn)

5 Such a dynamics would be natural if these corporations operated on independent markets, e.g.,
Ericsson in Sweden and Nokia in Finland. Prices of their shares would depend only on local market
conditions, e.g., on capacities of markets or consumer activity.
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induces a new (quantum) potential

U (t, q1, . . . , qn)

which perturbs the classical equations of motion. A modified Newton equation has
the form

ṗ = f + g, (10.3)

where f = −∂V /∂q and g = −∂U/∂q. We call the additional financial force g
a financial mental force. This force g(t, q1, . . . , qn) determines a kind of collective
consciousness of the financial market. Of course, g depends on economic and other
“hard” conditions given by the financial potential V (t, q1, . . . , qn). However, this
is not a direct dependence. In principle, a nonzero financial mental force can be
induced by the financial pilot wave ψ in the case of zero financial potential, V ≡ 0.

So V ≡ 0 does not imply that U ≡ 0. Market psychology is not totally determined
by economic factors. Financial (psychological) waves of information need not be
generated by changes in the real economic situation. They are mixtures of men-
tal and economic waves. Even in the absence of economic waves, mental financial
waves can have a large influence on the market.

By using the standard pilot wave formalism we obtain the following rule for
computing the financial mental force. We represent the financial pilot wave ψ(t, q)
in the form

ψ(t, q) = R(t, q)ei S(t,q),

where R(t, q) = |ψ(t, q)| is the amplitude of ψ(t, q) (the absolute value of the com-
plex number c = ψ(t, q)) and S(t, q) is the phase of ψ(t, q) (the argument of the
complex number c = ψ(t, q)). Then the financial mental potential is computed as

U (t, q1, . . . , qn) = − 1

R

n∑

i=1

∂2 R

∂q2
i

(t, q1, . . . , qn)

and the financial mental force as

g j (t, q1, . . . , qn) = −∂U

∂q j
(t, q1, . . . , qn).

These formulas imply that strong financial effects are produced by financial waves
having significant variations of amplitude.

Example 10.1 (Financial waves with small variation have no effect) Let us start with
the simplest example: R ≡ const. Then the financial (behavioral) force g ≡ 0. As
R ≡ const, it is impossible to change expectations of the whole financial market
by varying the price q j of one fixed type of shares, j. The constant information field
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does not induce psychological financial effects at all. As we have already remarked,
the absolute value of this constant does not play any role. Waves of constant ampli-
tude R = 1, as well as R = 10100, produce no effect.

Let now consider the case R(q) = cq, c > 0. This is a linear function; variation
is not so large. As a result, g ≡ 0 here also. There are no financial behavioral effects.

Example 10.2 (Speculation) Let R(q) = c(q2 + d), c, d > 0. Here

U (q) = − 2

q2 + d

(it does not depend on the amplitude c !) and

g(q) = −4q

(q2 + d)2
.

The quadratic function varies essentially more strongly than the linear function, and,
as a result, such a financial pilot wave induces a nontrivial financial force.

We analyze financial drives induced by such a force. We consider the following
situation: (the starting price) q > 0 and g < 0. The financial force g stimulates the
market (which works as a huge cognitive system) to decrease the price. For small
prices, g(q) ≈ −4q/d2. If the financial market increases the price q for shares of
this type, then the negative reaction of the financial force becomes stronger and
stronger. The market is pressed (by the financial force) to stop increasing the price
q. However, for large prices, g(q) ≈ −4/q3. If the market can approach this range
of prices (despite the negative pressure of the financial force for relatively small
q) then the market will feel a decrease of the negative pressure (we recall that we
consider the financial market as a huge cognitive system). This model explains well
the speculative behavior of the financial market.

Example 10.3 Let now R(q) = c(q4 + b), c, b > 0. Thus

g(q) = bq − q5

(q4 + b)2
.

Here the behavior of the market is more complicated. Set d =4
√

b. If the price q
is changing from q = 0 to q = d then the market is motivated (by the financial
force g(q)) to increase the price. The price q = d is critical for its financial activity.
For psychological reasons (of course, indirectly based on the whole information
available at the market) the market “understands” that it would be dangerous to
continue to increase the price. After approaching the price q = d, the market has a
psychological stimulus to decrease the price.

Financial pilot waves ψ(q) with R(q) that are polynomials of higher order can
induce very complex behavior. The interval [0,∞) is split into a collection of subin-
tervals 0 < d1 < d2 < . . . < dn < ∞ such that at each price level q = d j the trader
changes his attitude to increase or to decrease the price.
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In fact, we have considered just a one-dimensional model. In the real case we
have to consider multidimensional models of huge dimension. A financial pilot wave
ψ(q1, . . . , qn) on such a price space Q induces splitting of Q into a large number of
domains Q = O1

⋃
. . .

⋃
ON .

The only problem that we have still to solve is the description of the time-
dynamics of the financial pilot wave, ψ(t, q). We follow the standard pilot wave the-
ory. Here ψ(t, q) is found as the solution of Schrödinger’s equation. The Schrödinger
equation for the energy

H (q, p) = 1

2

n∑

j=1

p2
j

m j
+ V (q1, . . . , qn)

has the form

i�
∂ψ

∂t
(t, q1, . . . , qn) =

−
n∑

j=1

�
2

2m j

∂2ψ(t, q1, . . . , qn)

∂q2
j

+ V (q1, . . . , qn)ψ(t, q1, . . . , qn), (10.4)

with the initial condition

ψ(0, q1, . . . , qn) = ψ(q1, . . . , qn).

Thus if we know ψ(0, q) then by using Schrödinger’s equation we can find the pilot
wave at any instant of time t, ψ(t, q). Then we compute the corresponding mental
potential U (t, q) and mental force g(t, q) and solve Newton’s equation.

We shall use the same equation to find the evolution of the financial pilot
wave. We have only to make one remark, namely, on the role of the constant �

in Schrödinger’s equation, see [132–136]. In quantum mechanics (which deals with
microscopic objects) � is the Dirac constant, which is based on the Planck constant
h. The latter constant plays the fundamental role in all quantum considerations.
However, originally h appeared as just a scaling numerical parameter for processes
of energy exchange. Therefore in our financial model we can consider � as a price
scaling parameter, namely, the unit in which we would like to measure price change.
We do not present any special value for �. There are numerous investigations into
price scaling. It may be that there can be recommended some special value for �

related to the modern financial market, a fundamental financial constant. However,
it seems that

� = �(t)

evolves depending on economic development.
We suppose that the financial pilot wave evolves according to the financial

Schrödinger equation (an analogue of Schrödinger’s equation) on the price space.
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In the general case this equation has the form

i�
∂ψ

∂t
(t, q) = Ĥψ(t, q), ψ(0, q) = ψ(q),

where Ĥ is a self-adjoint operator corresponding to the financial energy given by a
function H (q, p) on the financial phase space. Here we proceed in the same way as
in ordinary quantum theory for elementary particles.

10.4 Application of Quantum Formalism to the Financial Market

We now turn back to the general scheme, concentrating on the configuration repre-
sentation, ψ : Q → C; ψ ∈ L2(Q) ≡ L2(Q, dx). This is the general QL statistical
formalism on the price space.

As in ordinary quantum mechanics, we consider a representation of financial
quantities, observables, by symmetric operators in L2(Q). By using Schrödinger’s
representation we define price and price change operators by setting

q̂ jψ(q) = q jψ(q),

the operator of multiplication by the q j -price;

p̂ j = �

i

∂

∂q j
,

the operator of differentiation with respect to the q j -price, normalized by the scaling
constant �. Operators of price and price change satisfy the canonical commutation
relations

[q̂, p̂] = q̂ p̂ − p̂q̂ = i�.

By using this operator representation of price and price changes we can represent
every function H (q, p) on the financial phase space as an operator H (q̂, p̂) in
L2(Q). In particular, the financial energy operator is represented by the operator

Ĥ =
n∑

j=1

p̂2
j

2m j
+ V (q̂1, . . . , q̂n) = −

n∑

j=1

�
2

2m j

∂2

∂q2
j

+ V (q1, . . . , qn).

Here V (q̂1, . . . , q̂n) is the operator of multiplication by the function V (q1, . . . , qn).
In this general QL formalism for the financial market we do not consider individ-

ual evolution of prices (in contrast to the Bohmian approach). The theory is purely
statistical. We can only determine the average of a financial observable A for some
fixed state φ of the financial market:



166 10 Psycho-financial Model

〈A〉φ = 〈Aφ, φ〉.

The use of the Bohmian model gives the additional possibility of determining
individual trajectories.

10.5 Standard Deviation of Price

We are interested in the standard deviation of the price qt . Let ψ be the mental state
of the financial market. The quantum formalism gives us the following formula for
the price dispersion:

σ2
ψ (qt ) = Eψq2

t − (Eψqt )
2, (10.5)

where for an observable a the quantum average (with respect to the state ψ) is given
by Eψa = 〈aψ,ψ〉.

Since, for any observable at ,

Eψat = Eψ(t)a0, (10.6)

we have

σ2
ψ (qt ) = Eψ(t)q

2 − (Eψ(t)q)2. (10.7)

So

σ2
ψ (qt ) = 〈q2ψ(t), ψ(t)〉 − 〈qψ(t), ψ(t)〉2. (10.8)

Suppose that at the initial instant of time the wave function has the form of a
Gaussian packet:

ψ0(q) ≈
∫ +∞

−∞
exp{−k2(Δq)2 + ikq}dk,

where Δq is the width of packet in the price space. Here the mean value of price is
equal to zero. It is well known that

ψ(t, q) ≈
∫ +∞

−∞
exp{−k2(Δq)2 + ikq − (ihk2t)/2m}dk.

Here the mean value of price is equal to zero for any instance of time. By calculating
this integral we see that

σψ (qt ) =
√

〈q2ψ(t), ψ(t)〉 − 〈qψ(t), ψ(t)〉2 =
√

〈q2ψ(t), ψ(t)〉 ≈ ht/mΔq

for large t.
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Thus for a Gaussian packet of prices its standard deviation evolves as a linear
function with respect to t. Large financial mass (i.e., a higher level of emission of
shares) induces smaller standard deviation – so the price does not fluctuate far from
the mean value. If the level of emission is very small, then large deviations from the
mean value can be expected.

10.6 Comparison with Conventional Models
of the Financial Market

Our model of the stocks market differs crucially from the main conventional models.
Therefore we should perform an extended comparative analysis of our model and
known models. This is not a simple task and it takes a lot of effort.

10.6.1 Stochastic Model

Since the pioneer paper of Bachelier [24], various models of the financial market
based on stochastic processes have been actively developed. We recall that Bachelier
determined the probability of price changes P(v(t) ≤ v) by writing down what is
now called the Chapman–Kolmogorov equation. If we introduce the density of this
probability distribution p(t, x), so P(xt ≤ x) = ∫ x

−∞ p(t, x)dx, then it satisfies
the Cauchy problem of the partial differential equation of the second order. This
equation is known in physics as Chapman’s equation and in probability theory as
the direct Kolmogorov equation. In the simplest case, when the underlying diffusion
process is the Wiener process (Brownian motion), this equation has the form (the
heat conduction equation)

∂p(t, x)

∂t
= 1

2

∂2 p(t, x)

∂x2
. (10.9)

We recall again that in Bachelier’s paper [24], x = v was the price change variable.
For a general diffusion process we have the direct Kolmogorov equation

∂p(t, x)

∂t
= 1

2

∂2

∂x2
(σ2(t, x)p(t, x)) − ∂

∂x
(μ(t, x)p(t, x)). (10.10)

This equation is based on the diffusion process

dxt = μ(t, xt ) dt + σ(t, xt ) dwt , (10.11)

where w(t) is the Wiener process. This equation should be interpreted as a slightly
colloquial way of expressing the corresponding integral equation
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xt = xt0 +
∫ t

t0

μ(s, xs)ds +
∫ t

t0

σ(s, xs)dws . (10.12)

We remark that Bachelier’s original proposal of Gaussian-distributed price changes
was soon replaced by a model in which prices of stocks are log–normal distributed,
i.e., stock prices q(t) are performing a geometric Brownian motion. In a geometric
Brownian motion, the difference of the logarithms of prices are Gaussian distributed.

We recall that a stochastic process St is said to follow a geometric Brownian
motion if it satisfies the following stochastic differential equation:

d St = u St dt + v S dwt , (10.13)

where wt is a Wiener process (Brownian motion) and u (“the percentage drift”) and
v (“the percentage volatility”) are constants. The equation has an analytic solution:

St = S0 exp
(
(u − v2/2)t + vwt

)
. (10.14)

The St = St (ω) depends on a random parameter ω; this parameter is typically omit-
ted. The crucial property of the stochastic process St is that the random variable

log(St/S0) = log(St ) − log(S0)

is normally distributed.
In contrast to such stochastic models, our Bohmian model of the stock market

is not based on the theory of stochastic differential equations. In our model the
randomness of the stock market cannot be represented in the form of some transfor-
mation of the Wiener process.

We recall that the stochastic process model has been intensely criticized for many
reasons, see, e.g., [237]. First of all there are a number of difficult problems that
could be interpreted as technical problems. The most important among them is the
problem of the choice of an adequate stochastic process ξ (t) describing price or
price change. Nowadays it is widely accepted that the geometric Bohmian motion
model provides only a first approximation of what is observed in real data. One
should try to find new classes of stochastic processes. In particular, they would pro-
vide an explanation of the empirical evidence that the tails of measured distributions
are longer than expected for a geometric Brownian motion. To solve this problem,
Mandelbrot proposed that the price changes should be considered to follow a Levy
distribution [237]. However, the Levy distribution has a rather pathological prop-
erty: its variance is infinite. Therefore, as was emphasized in the book by Mantegna
and Stanley [237], the problem of finding a stochastic process providing an adequate
description of the stock market is still unsolved.

However, our critique of the conventional stochastic processes approach to the
stock market has no direct relation to this discussion on the choice of an underlying
stochastic process. We are closer to scientific groups that criticize this conventional
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model by questioning the possibility of describing price dynamics by stochastic
processes at all.

10.6.2 Deterministic Dynamical Model

In particular, a lot of work has been done on applying deterministic nonlinear
dynamical systems to simulate financial time series, see [237] for details. This
approach is typically criticized through the following general argument: “the time
evolution of an asset price depends on all information affecting the investigated asset
and it seems unlikely to us that all this information can be essentially described by
a small number of nonlinear equations,” [237]. We support such a viewpoint.

We shall use only critical arguments against the hypothesis of the stochastic stock
market that were provided by adherents of the hypothesis of a deterministic (but
essentially nonlinear) stock market.

Only at first sight is the Bohmian financial model a kind of deterministic model.
Of course, dynamics of prices (as well as price changes) are deterministic. It is
described by Newton’s second law, see the ordinary differential equation (10.3).
It seems that randomness can be incorporated into such a model only through the
initial conditions:

ṗ(t, ω) = f (t, q(t, ω)) + g(t, q(t, ω)), q(0) = q0(ω), p(0) = p0(ω), (10.15)

where q(0) = q0(ω), p(0) = p0(ω) are random variables (initial distribution of
prices and momenta) and ω is a chance parameter.

However, the situation is not so simple. Bohmian randomness does not reduce
to randomness of initial conditions or chaotic behavior of (10.3) for some nonlinear
classical and quantum forces. These are classical impacts on randomness. But a
really new impact is given by the essentially quantum randomness that is encoded
in the ψ-function (i.e., pilot wave or wave function). As we know, the evolution of
the ψ-function is described by an additional equation – Schrödinger’s equation –
and hence the ψ-randomness can be extracted neither from the initial conditions for
(10.15) nor from possible chaotic behavior.

In our model the ψ-function gives the dynamics of expectations at the financial
market. These expectations are a huge source of randomness at the market – mental
(psychological) randomness. However, this randomness is not classical (so it is a
non-Kolmogorov probability model).

Finally, we remark that in quantum mechanics the wave function is not a mea-
surable quantity. It seems that we have a similar situation for the financial market.
We are not able to measure the financial ψ-field (which is an infinite-dimensional
object, since the Hilbert space has infinite dimension). This field contains thoughts
and expectations of millions of agents and of course it could not be “recorded”
(unlike prices or price changes).
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10.6.3 Stochastic Model and Expectations of Agents
of the Financial Market

Let us consider again the model of the stock market based on geometric Brownian
motion:

d St = uSt dt + vS dwt .

We notice that in this equation there is no term describing the behavior of agents of
the market. Coefficients u and v do not have any direct relation to expectations and
the market psychology. Moreover, even if we introduce some additional stochastic
processes

η(t, ω) = (η1(t, ω), . . . , ηN (t, ω))

describing the behavior of agents and additional coefficients (in stochastic differen-
tial equations for such processes) we would not be able to simulate the real market.
A finite-dimensional vector η(t, ω) cannot describe the “mental state of the market”,
which is of infinite complexity. One can consider the Bohmian model as the intro-
duction of the infinite-dimensional chance parameter ψ. And this chance parameter
cannot be described by classical probability theory.



Chapter 11
The Problem of Smoothness of Bohmian
Trajectories

We point out that there are two basic (rather different) interpretations of Bohmian
mechanics: the quantum force interpretation, Bohm and Hiley [40], and the
guidance-field interpretation, e.g., Cushing et al. [72]. In the first, the basic equation
is Newton’s equation for the position of a quantum particle, and in the second, the
guidance equation for its momentum.

One objection (presented by Dr. Roger Pettersson at the University of Växjö) to
applying the Bohmian quantum formalism to describe the dynamics of prices (of
e.g. shares) of the financial market is the smoothness of trajectories obtained in the
Bohmian model – at least if one uses the quantum force interpretation, Bohm and
Hiley [40]. In contrast to this, in financial mathematics it is commonly assumed that
price trajectories are not differentiable, Mantegna and Stanley [237] or Shiryaev
[281]. This is a problem.

This problem can be easily solved by using the guidance-field interpretation
of Bohmian mechanics (i.e. if one proceeds without introducing the quantum-like
financial force, Cushing et al. [72]) and considering the integral version of the
guidance equation. However, another objection can be presented even in this case
(and it was really presented by Roger Pettersson). Solutions of the integral guidance
equation have zero quadratic variation. In contrast to this, in financial mathematics
it is commonly assumed that price trajectories have nonzero quadratic variations,
Mantegna and Stanley [237] or Shiryaev [281]. This is also a problem.

It seems that independently of the interpretation of Bohmian mechanics one can-
not apply it to the financial market in the canonical deterministic form. The only
way to proceed with real financial data is to apply the stochastic version of the pilot
wave theory – the model of Bohm–Vigier [40].

11.1 Existence Theorems for Nonsmooth Financial Forces

11.1.1 The Problem of Smoothness of Price Trajectories

In the Bohmian model for price dynamics the price trajectory q(t) can be found as
the solution of the equation
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m
d2q(t)

dt2
= f (t, q(t)) + g(t, q(t)) (11.1)

with the initial condition q(t0) = q0, q ′(t0) = q ′
0. Here we consider a “classical”

(time-dependent) force

f (t, q) = −∂V (t, q)

∂q

and a “quantum-like” force

g(t, q) = −∂U (t, q)

∂q
,

where U (t, q) is the quantum potential, induced by the Schrödinger dynamics. In
Bohmian mechanics for physical systems, (11.1) is considered as an ordinary dif-
ferential equation and q(t) as the unique solution (corresponding to the initial con-
ditions q(t0) = q0, q ′(t0) = q ′

0) of the class C2 : q(t) is assumed to be twice
differentiable with continuous q ′′(t).

One possible objection to applying the Bohmian quantum model to describe
dynamics of prices (of e.g. shares) at the financial market is smoothness of tra-
jectories. As mentioned above, in financial mathematics it is commonly assumed
that the price-trajectory is not differentiable, see, e.g., [237, 281].

Of course, one could simply reply that there are no smooth trajectories in nature.
Smooth trajectories belong neither to physical nor financial reality. They appear in
mathematical models that can be used to describe reality. It is clear that the pos-
sibility of applying a mathematical model with smooth trajectories depends on the
chosen time scale. Trajectories that can be considered as smooth (or continuous) at
one time scale might be nonsmooth (or discontinuous) at a finer time scale.

We illustrate this general philosophic thesis by the history of development of
financial models. We recall that at the first stage of development of financial math-
ematics, in the Bachelier model and the Black and Scholes model, processes with
continuous trajectories were considered: the Wiener process and more general dif-
fusion processes. However, recently it was claimed that such stochastic models
(with continuous processes) are not completely adequate for real financial data, see,
e.g., [237, 281] for detailed analysis. It was observed that at finer time scales some
Levy processes with jump trajectories are more adequate for data from the financial
market.

Therefore one could say that the Bohmian model provides a rough description
of price dynamics and describes not the real price trajectories but their smoothed
versions. However, it would be interesting to keep the interpretation of Bohmian
trajectories as the real price trajectories. In such an approach one should obtain
nonsmooth Bohmian trajectories. The following section is devoted to theorems pro-
viding nonsmooth solutions.
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11.1.2 Picard’s Theorem and its Generalization

We recall the standard uniqueness and existence theorem for ordinary differential
equations, Picard’s theorem, that guarantees smoothness of trajectories, see, e.g.,
[220].

Theorem 11.1 Let F : [0, T ] × R → R be a continuous function and let F satisfy
the Lipschitz condition with respect to the variable x:

|F(t, x) − F(t, y)| ≤ c|x − y|, c > 0. (11.2)

Then, for any point (t0, x0) ∈ [0, T ) × R there exists the unique C1-solution of
the Cauchy problem:

dx

dt
= F(t, x(t)), x(t0) = x0, (11.3)

on the segment Δ = [t0, a], where a > 0 depends on t0, x0, and F.

We recall the standard proof of this theorem, because the scheme of this proof can
be easily generalized to prove Theorems 11.3 and 11.4. Let us consider the space
of continuous functions x : [t0, a] → R, where a > 0 is a number which will be
determined. Denote this space by the symbol C[t0, a]. The Cauchy problem (11.3)
for the ordinary differential equation can be written as the integral equation

x(t) = x(t0) +
∫ t

t0

F(s, x(s))ds (11.4)

The crucial point for our further considerations is that continuity of the function F
with respect to the pair of variables (t, x) implies continuity of y(s) = F(s, x(s))
for any continuous x(s). But the integral z(t) = ∫ t

0 y(s)ds is differentiable for any
continuous y(s) and z′(t) = y(t) is also continuous. The basic point of the standard
proof is that, for a sufficiently small a > 0, the operator

G(x)(t) = x0 +
∫ t

t0

F(s, x(s))ds (11.5)

maps the functional space C[t0, a] into C[t0, a] and there is a contraction in this
space:

ρ∞(G(x1), G(x2)) ≤ αρ∞(x10, x20), α < 1, (11.6)

for any two trajectories x1(t), x2(t) ∈ C[t0, a] such that x1(t0) = x10 and x2(t0) =
x20. Here, to obtain α < 1, the interval [t0, a] should be chosen sufficiently
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small, see further considerations. Here ρ∞(u1, u2) = ||u1 − u2||∞ and ||u||∞ =
supt0≤t≤a |u(s)|. The contraction condition, α < 1, implies that the iterations

x1(t) = x0 +
∫ t

t0

F(S, x0)ds,

x2(t) = x0 +
∫ t

t0

F(S, x1(S))ds, ...,

xn(t) = x0 +
∫ t

t0

F(S, xn−1(S))ds, ...

converge to a solution x(t) of the integral equation (11.4). Finally, we remark that the
contraction condition (11.6) implies that the solution is unique in the space C[t0, a].

We also recall the well known Peano theorem, [220]:

Theorem 11.2 Let F : [0, T ] × R be a continuous function. Then, for any point
(t0, x0) ∈ [0, T ]×R there exists locally a C1-solution of the Cauchy problem (11.3).

We remark that Peano’s theorem does not imply uniqueness of solution.
It is clear that discontinuous financial forces can induce price trajectories q(t) that

are not smooth: moreover, price trajectories can even be discontinuous! From this
point of view the main problem is not smoothness of price trajectories q(t) (and in
particular the zero covariation for such trajectories), but the absence of an existence
and uniqueness theorem for discontinuous financial forces. We shall formulate and
prove such a theorem. Of course, outside the class of smooth solutions one could
not study the original Cauchy problem for an ordinary differential equation (11.3).
Instead of this one should consider the integral equation (11.4).

We shall generalize Theorem 11.1 to discontinuous F. Let us consider the space
B M[t0, a] consisting of bounded measurable functions x : [t0, a] → R. Thus:
a) supt0≤t≤a |x(t)| ≡ ||x ||∞ < ∞; b) for any Borel subset A ⊂ R, its preimage
x−1(A) = {s ∈ [t0, a] : x(s) ∈ A} is again a Borel subset in [t0, a].

Lemma 11.1 The space of trajectories B M[t0, a] is a Banach space.

Theorem 11.3 Let F : [0, T ] × R → R be a measurable bounded function and let
F satisfy the Lipschitz condition with respect to the x-variable, see (11.2). Then, for
any point (t0, x0 ∈ [0, T )×R, there exists a unique solution of the integral equation
(11.4) of the class B M[t0, a], where a > 0 depends on x0, t0, and F.

Proposition 11.1 (Continuity of the solution of the integral equation) Let the condi-
tions of Theorem 11.3 hold. Then solutions are continuous functions x :
[t0, a] → R.

Thus Theorem 11.3 gives a sufficient condition for the existence of the unique
continuous trajectory solution x(t) for the integral equation (11.4). But, of course,
in general x(t) is not continuously differentiable!

Theorem 11.4 Let f satisfy the Lipschitz condition (11.2). Then for any point
(t0, x0 ∈ [0, T ) × R) there exists the unique solution of the integral equation (11.4)
of the class L2[t0, a], where a > 0 depends on x0, t0, and F.
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Proposition 11.2 (Continuity) Let the conditions of Theorem 11.4 hold. Then solu-
tions x : [t0, a] → R are continuous functions.

Thus we again have obtained continuous, but in general non-smooth (x �∈ C1)
solutions of the basic integral equation.

We remark that Theorems 11.3 and 11.4 are valid in the multidimensional case:
x0 = (x01, . . . , x0n), x(t) = (x1(t), . . . , xn(t)), and F : [0, T ] × Rn → Rn.

To show this, we should change in all previous considerations the absolute value

|x | to be norm on the Euclidean space Rn : ‖x‖ =
√∑

j=1 x2
j . We now use a

standard trick to apply our theory to Newton’s equation (11.1), which is a second-
order differential equation. We rewrite this equation as a system of equations first
order with respect to x = (x1, . . . , xn, xn+1, x2n), where x1 = q1, . . . , xn = qn,

xn+1 = p1, . . . , x2n = pn. In fact, this is nothing other than the phase space
representation. Newton’s equation (11.1) will be written as the Hamilton equation.
However, the Hamiltonian structure is not important for us in this context. In any
event we obtain the following system of first-order equations:

dx

dt
= F(t, x(t)), (11.7)

where

F(t, x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xn+1

·
·
·
x2n

f1(t, x1, . . . , xn) + g1(t, x1, . . . , xn)
·
·
·
fn(t, x1, . . . , xn) + gn(t, x1, . . . , xn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here f j (t, x1, xn) = ∂V /∂x j (t, x1, . . . , xn) and g j (t, x1, . . . , xn) = ∂U/∂x j

(t, x1, . . . , xn). Therefore if

∇V =
(∂V

∂xn

, . . . ,
∂V

∂xn

)

or

∇U =
(∂U

∂xn

, . . . ,
∂U

∂xn

)

are not continuous, then the standard existence and uniqueness theorems, see The-
orems 11.1 and 11.2 could not be applied. But, instead of the ordinary differential
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equation (11.7), we can consider the integral equation

x(t) = x0 +
∫ t

t0

F(s, x(s))ds (11.8)

and apply Theorems 11.3 and 11.4 to this equation. We note that owing to the struc-
ture of F(t, x), we have in fact p1(t) = p01 + ∫ t

t0
F1(s, q(s))ds, pn(t) = p0n +∫ t

t0
Fn(s, q(s))ds, q1(t) = q01+1/m

∫ t
t0

p1(s, q(s))ds, qn(t) = q0n+1/m
∫ t

t0
pn(s)ds.

By Propositions 11.1 and 11.2 solutions p j (t) are continuous functions. Therefore
integrals

∫ t
t0

p j (s)ds are continuous differentiable functions. Thus under the condi-
tions of Theorem 11.3 or Theorem 11.4 we obtain the following price dynamics:

Price trajectories are of the class C1 (so dq/dt(t) exists and is continuous), but
price velocity v(t) = p(t)/m is in general nondifferentiable.

11.2 The Problem of Quadratic Variation

The quadratic variation of a function u on an interval [0, T ] is defined as

〈u〉(T ) = lim
‖P‖→0

n−1∑

k=0

(u(tk+1) − u(tk))2,

where P = {0 = t0 < t1 < ... < tn = T } is a partition of [0, T ] and ‖P‖ =
maxk{(tk+1 − tk)}. We recall the following well-known result:

Theorem 11.5 If u is differentiable, then 〈 f 〉(T ) = 0.

Therefore, the quadratic variation of any smooth Bohmian trajectory is equal to
zero. On the other hand, it is well known that real price trajectories have nonzero
quadratic variation, [237, 281]. This is a strong objection to consideration of smooth
Bohmian price trajectories.

In the previous section existence theorems were derived that provide nonsmooth
trajectories. One might hope that solutions given by those theorems would have
nonzero quadratic variation. But this is not the case.

Theorem 11.6 Assume that x(t) = x0 + ∫ t
0 F(s, x(s))ds, where F is bounded, i.e.,

|F(t, x)| ≤ K , and measurable. Then the quadratic variation 〈F〉(t) = 0.

Proof We have: |x(tk) − x(tk−1)|2 = | ∫ tk
tk−1

F(s, x(s))ds| ≤ K 2(tk − tk−1)2. Hence,
with a partition of [0, t], say, 0 = t0 < t1 < ... < tn = t, we get

n∑

k=1

|x(tk) − x(tk−1)|2 ≤ K 2
n∑

1

(tk − tk−1)2

≤ K 2 maxk:1≤k≤n(tk − tk−1)
n∑

1

(tk − tk−1) = K 2maxk:1≤k≤n(tk − tk−1),
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which converges to zero as the partition gets finer, i.e. the quadratic variation of
t �→ x(t) is zero.

Thus the objection related to the nonzero quadratic variation is essentially
stronger than the smoothness objection. One way to escape this problem is to con-
sider unbounded quantum potentials or even potentials that are given by
distributions.

11.3 Singular Potentials and Forces

We present some examples of discontinuous quantum forces g (induced by a
discontinuous quantum potential U ).

11.3.1 Example

Let us consider the wave function ψ(x) = c(x + 1)2e−x2/2dx, where c is the nor-
malization constant providing

∫ +∞
−∞ |ψ(x)|2dx = 1. Here ψ(x) ≡ R(x) = |ψ(x)|.

We have

R′(x) = c[2(x + 1) − x(x + 1)2]e− x2

2 = −c(x3 + 2x2 − x − 2)e− x2

2 ,

and R′′(x) = c(x4 + 2x3 − 4x2 − 6x + 1)e−x2/2. Hence

U (x) = − R′′(x)

R(x)
= x4 + 2x3 − 4x2 − 6x + 1

(x + 1)2
.

Thus the potential has a singularity at the point x = −1.

In this example a singularity in the quantum potential U (t, x) is a consequence
of division by the amplitude of the wave function R(t, x). If |ψ(t, x0)| = 0, then
there can appear a singularity at the point x0.

11.3.2 Singular Quantum Potentials

Let Ĥ be a self-adjoint operator, Ĥ ≥ 0, in L2(Rn) (a Hamiltonian – an operator
representing the financial energy). Let us consider the corresponding Schrödinger
equation ∂ψ/∂t = Ĥψ,ψ(0) = ψ0, in L2(Rn). Then its solution has the form

ut (ψ0) = e
−i t Ĥ

h ψ0.

If the operator Ĥ is continuous, then its exponent is defined with aid of the usual
exponential power series:

e
−i t Ĥ

h =
∞∑

n=0

(−i t Ĥ

h

)n
/n! =

∞∑

n=0

(−i t

h

)n
/n! Ĥ n.
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If the operator Ĥ is not continuous, then this exponent can be defined by using
the spectral theorem for self-adjoint operators.

We recall that, for any t ≥ 0, the map ut : L2(Rn) → L2(Rn) is a unitary
operator: (a) it is one-to-one; (b) it maps L2(Rn) onto L2(Rn); (c) it preserves the
scalar product: 〈utψ, utφ〉 = 〈ψ, φ〉 ψ, φ ∈ L2.

We pay attention to (b). By (b), for any φ ∈ L2(Rn), we can find a ψ0 ∈ L2(Rn)
such that φ = ut (ψ0). It is sufficient to choose ψ0 = u−1

t (φ) (any unitary operator
is invertible). Thus, ψ(t) = ut (ψ0) = φ. In general a function φ ∈ L2(Rn) is not a
smooth or even continuous function! Therefore in the case under consideration (we
created the wave function ψ such that ψ(t) = φ, where φ was an arbitrarily chosen
square integrable function),

U (t, x) = −|ψ(t, x)|′′
|ψ(t, x)| = −|φ(x)|′′

φ(x)

is in general a generalized function (distribution)! For example, let us choose

φ(x) =
{ 1

2b
,−b ≤ x ≤ b

0, x �∈ [−b, b]

Here R(t, x) = |φ(x)| = φ(x) and

R′(t, x) = δ(x + b) − δ(x − b)

2b
,

R′′(t, x) = δ′(x + b) − δ′(x − b)

2b
.

Conclusion. In general, the quantum potential U (t, x) is a generalized func-
tion (distribution). Therefore the price (as well as price change) trajectory is
a generalized function (distribution) of the time variable t . Moreover, since the
dynamical equation is nonlinear, one cannot guarantee even the existence of a
solution.

11.4 Classical and Quantum Financial Randomness

By considering singular quantum potentials we can model the Bohmian price
dynamics with trajectories having nonzero quadratic variation. The main problem
is that there are no existence theorems for such forces. Derivation of such theorems
is an interesting mathematical problem, but it is completely outside of my expertise.

Another way to obtain a more realistic QL model for the financial market is to
consider additional stochastic terms in Newton’s equation for the price dynamics.
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11.4.1 Randomness of Initial Conditions

Let us consider the financial Newton equation (11.1) with random initial conditions:

md2q(t, ω)

dt2
= f (t, q(t, ω)) + g(t, q(t, ω)), (11.9)

q(0, ω) = q0(ω), q̇(0, ω) = q̇0(ω), (11.10)

where q0(ω) and q̇0(ω) are two random variables giving the initial distribution of
prices and price changes, respectively. This is the Cauchy problem for an ordinary
differential equation depending on a parameter ω. If f satisfies the conditions of
Theorem 11.1, i.e., both classical and quantum (behavioral) financial forces f (t, q)
and g(t, q) are continuous and satisfy the Lipschitz condition with respect to the
price variable q, then, for any ω, there exists the solution q(t, ω) having the class C2

with respect to the time variable t . But through initial conditions the price depends
on the random parameter ω, so q(t, ω) is a stochastic process. In the same way the
price change v(t, ω) = q̇(t, ω) is also a stochastic process. These processes can be
extremely complicated (through nonlinearity of coefficients f and g). In general,
these are nonstationary processes. For example, the mathematical expectation <

q(t) >= Eq(t, ω) and dispersion (“volatility”) σ2(q(t)) = Eq2(t, ω)− < q(t) >2

can depend on t .
If at least one of the financial forces f (t, x) and g(t, x) is not continuous, then

we consider the corresponding integral equations:

p(t, ω) = p0(ω) +
∫ t

t0

f (s, q(s, ω))ds +
∫ t

t0

g(s, q(s, ω))ds, (11.11)

q(t, ω) = q0(ω) + 1

m

∫ t

t0

p(s, ω)ds (11.12)

Under the assumptions of Theorem 11.3 or Theorem 11.4, there exists a unique
stochastic process with continuous trajectories, q(t, ω), p(t, ω), giving the solution
of the system of integral equations (11.11), (11.12) with random initial
conditions.

However, the trajectories still have zero quadratic variation. Therefore this model
is not satisfactory.

11.4.2 Random Financial Mass

The parameter m, “financial mass”, was considered as a constant of the model. In the
real financial market m depends on t : m ≡ m(t) = (m1(t), . . . , mn(t)). Here m j (t)
is the volume of emission (the number of items) of shares of the j th corporation.
Therefore the corresponding market capitalization is given by Tj (t) = m j (t)q j (t).
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In this way we modify the financial Newton equation (11.9): m j (t)q̈ j = f j (t, q) +
g j (t, q). We set

Fj (t, q) = f j (t, q) + g j (t, q)

m j (t)
.

If these functions are continuous (e.g., m j (t) ≥ ε j > 0 and continuous)1

and satisfy the Lipschitz condition, then by Theorem 11.1 there exists a unique
C2-solution. If components Fj (t, q) are discontinuous, but they satisfy the condi-
tions of Theorem 11.3 or 11.4, then there exists a unique continuous solution of
the corresponding integral equation with time-dependent financial masses. By con-
sidering the Bohmian model of the financial market with random initial conditions
it is natural to assume that even the financial masses m j (t) are random variables,
m j (t, ω).

Thus the level of emission of j th share m j depends on the classical state ω of
the financial market: m j ≡ m j (t, ω). In this way we obtain the simplest stochastic
modification of Bohmian dynamics:

q̈ j (t, ω) = f j (t, q(t, ω)) + g j (t, q(t, ω))

m j (t, ω)

or in the integral version:

q j (t, ω) = q0 j (ω) +
∫ t

t0

v(s, ω)ds, (11.13)

v j (t, ω) = v0 j (ω) +
∫ t

t0

[ f j (s, q(s, ω)) + g j (s, q(s, ω))]/m j (s, ω)ds. (11.14)

If the financial mass can become zero at some moments of time, then the price
can have nonzero quadratic variation. However, under such conditions we do not
have an existence theorem.

11.5 Bohm–Vigier Stochastic Mechanics

The quadratic variation objection motivates consideration of the Bohm–Vigier
stochastic model, instead of the completely deterministic Bohmian model. We fol-
low here [40]. We recall that in the original Bohmian model the velocity of an
individual particle is given by

v = ∇S(q)

m
. (11.15)

1 The condition m j (t) ≥ ε j > 0 is very natural. To be accounted at the financial market, the
volume of emission of any share should not be negligibly small.
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If ψ = Rei S/h, then Schrödinger’s equation implies that

dv

dt
= −∇(V + U ), (11.16)

where V and U are classical and quantum potentials respectively. In principle one
can work only with the basic equation (11.15).

The basic assumption of Bohm and Vigier was that the velocity of an individual
particle is given by

v = ∇S(q)

m
+ η(t), (11.17)

where η(t) represents a random contribution to the velocity of that particle which
fluctuates in a way that may be represented as a random process but with zero aver-
age. In the Bohm–Vigier model the stochastic mechanics quantum potential comes
in through the average velocity and not the actual one.

We shall now apply the Bohm–Vigier model to the financial market, see also
Haven [136]. Equation (11.17) is considered as the basic equation for the price
velocity. Thus the real price becomes a random process (as well as in classical
financial mathematics [281]).We can write the stochastic differential equation, SDE,
for the price:

dq(t) = ∇S(q)

m
dt + η(t)dt. (11.18)

To give rigorous mathematical meaning to the stochastic differential we assume
that

η(t) = dξ (t)

dt
, (11.19)

for some stochastic process ξ (t). Thus formally:

η(t)dt = dξ (t)

dt
dt = dξ (t), (11.20)

and the rigorous mathematical form of (11.18) is

dq(t) = ∇S(q)

m
dt + dξ (t). (11.21)

The expression (11.19) one can consider either formally or in the sense of distri-
bution theory (we recall that for basic stochastic processes, e.g., the Wiener process,
trajectories are not differentiable in the ordinary sense almost everywhere).
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Suppose, for example, that the random contribution to the price dynamics is given
by white noise, ηwhite noise(t). It can be defined as the derivative (in the sense of
distribution theory) of the Wiener process: ηwhite noise(t) = dw(t)/dt, thus

v = ∇S(q)

m
+ ηwhite noise(t). (11.22)

In this case the price dynamics is given by the SDE

dq(t) = ∇S(q)

m
dt + dw(t). (11.23)

What is the main difference from the classical SDE description of the financial
market? This is the presence of the pilot wave ψ(t, q), the mental field of the finan-
cial market, which determines the coefficient of drift ∇S(q)/m. Here S ≡ Sψ. And
the ψ-function is driven by a special field equation – Schrödinger’s equation. The
latter equation is not determined by the SDE (11.23). Thus, instead of one SDE, in
the quantum-like model, we have the following system of two equations:

dq(t) = ∇Sψ (q)

m
dt + dξ (t). (11.24)

i h
∂ψ

∂t
(t, q) = − h2

2m

∂2ψ

∂q2
(t, q) + V (q)ψ(t, q). (11.25)

Finally we come back to the problem of the quadratic variation of the price. In
the Bohm–Vigier stochastic model (for, e.g., white noise fluctuations of the price
velocity) quadratic variation is nonzero.

11.6 Bohmian Model and Models with Stochastic Volatility

Some authors, see, e.g., [281] for details and references, consider the parameters of
volatility σ(t) as representing the market behavior. From such a point of view our
financial wave ψ(t, q) plays in the Bohmian financial model a role similar to the
role of volatility σ(t) in the standard stochastic financial models. We recall that the
dynamics of ψ(t, q) is driven by an independent equation, namely the Schrödinger
equation, and ψ(t, q) plays the role of a parameter of the dynamical equation for
the price q(t).

We recall the functioning of this scheme:

a) we find the financial wave ψ(t, q) from the Schrödinger equation;
b) we find the corresponding quantum financial potential

U (t, q) ≡ U (t, q; ψ)

(it depends on ψ as a parameter);



11.7 Classical and Quantum Contributions to Financial Randomness 183

c) we put U (t, q; ψ) into the financial Newton equation through the quantum
(behavioral) force g(t, q; ψ) = −∂U (t, q; ψ)/∂q.

We remark that conventional models with stochastic volatility work in the same
way, see [281]. Here the price qt is a solution of the stochastic differential equation

dqt = qtμ(t, qt , σt )dt + σt dwε
t , (11.26)

where wε
t is the Wiener process and σt is a coefficient depending on time, price and

volatility. And (this is a crucial point) volatility satisfies the following stochastic
differential equation:

dΔt = α(t,Δt )dt + b(t,Δt )dwδ
t , (11.27)

where Δt = ln σ2
t and wδ

t is a Wiener process that is independent of wε
t .

One should first solve the equation for the volatility (11.27), then put σt into
(11.26) and, finally, find the price qt .

11.7 Classical and Quantum Contributions
to Financial Randomness

As in conventional stochastic financial mathematics, see, e.g., [237, 281], we can
interpret ω as representing a state of the financial market. The only difference is that
in our model such an ω should be related to “classical state” of the financial market.
Thus we interpret conventional randomness of the financial market as “classical
randomness”, i.e., randomness that is not determined by expectations of traders and
other behavioral factors. Besides this “classical states” ω our model contains also
“quantum states” ψ of the financial market describing the market’s psychology. In
fact all processes under consideration depend not only the classical state ω, but also
on the quantum state ψ :

dv j (t, ω,ψ) = f j (t, q(t, ω,ψ), v(t, ω,ψ), ω)

m j (t, ω)
dt + g j (t, q(t, ω,ψ), ω,ψ)

m j (t, ω)
dt

(11.28)

+ σ j (t, ω)dW j (t, ω).

We remark that the quantum force depends on the ψ-parameter even directly:
g j = g j (t, q, ω,ψ). The initial condition for the SDE (11.28) depends only on ω :
q j (0, ω) = q j0(ω), v j (0, ω) = v j0(ω). But in general the quantum state of the
financial market is given not by the pure state ψ, but by the von Neumann density
operator ρ. Therefore ψ in (11.28) is a quantum random parameter with the initial
quantum probability distribution given by the density operator at the initial moment:
ρ(0) = ρ0. We recall that the Schrödinger equation for the pure state implies the von
Neumann equation for the density operator:

i ρ̇(t) = [Ĥ , ρ]. (11.29)
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Appendix

12.1 Independence

12.1.1 Kolmogorovian Model

This section is a complement to Section 2.1.2 of Chapter 2.
By Kolmogorov’s axiomatics two events A, B ∈ F are independent if

P(A ∩ B) = P(A)P(B). (12.1)

Consequently, two random variables a and b are independent if

pab(α, β) = pa(α)pb(β). (12.2)

If two random variables are independent, then

Eab = EaEb (12.3)

and by (2.8)

cov(a, b) = 0. (12.4)

Hence, if two random variables are independent, then their covariation is equal to
zero. However, in general the latter does not imply the former!

We remark that Kolmogorov’s definition of independence involves the joint prob-
ability distribution of two random variables. It is not always possible in the coming
non-Kolmogorovian considerations to define it – in QM and my contextual proba-
bilistic model, Chapter 3. Let us write the condition of independence (12.2) by using
only transition probabilities. The latter can be defined even in non-Kolmogorovian
models.

By using Bayes formula and (12.2) we obtain for two independent nondegenerate
(see Section 2.1.2) random variables

pβ|α ≡ P(b = β|a = α) = pb(β) (12.5)

A. Khrennikov, Ubiquitous Quantum Structure,
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for all values a = α. Consider two successive measurements, first of a and then of
b; then the result of the latter is the same as if a was not done. In the same way

pα|β ≡ P(a = α|b = β) = pa(α). (12.6)

Now let a and b satisfy conditions (12.5) or (12.6). Then (12.2) holds.

Remark 12.1 Conditions (12.5) and (12.6) are equivalent. This fact reflects that in
the Kolmogorovian model the relation of independence is symmetric. If b is inde-
pendent of a – this fact is expressed by (12.5) – then a is independent of b – as
expressed by (12.6) – and vice versa. In principle, in real life it is possible to imagine
the situation of nonsymmetric dependence. For example, b does not depend on a,

i.e., (12.5) holds, but a depends on b, i.e., (12.6) does not hold. Such a situation is
not described by the Kolmogorovian model, see Chapter 3.

Remark 12.2 The real “physical” meaning of independence is encoded in the pair
of equalities (12.5) and (12.6). Equality (12.2) is just a nice mathematical definition
unifying (for nondegenerate random variables) the pair of equalities (12.5), (12.6).

Conditions (12.5) and (12.6) imply that

pβ|α1 = . . . pβ|αn = . . . = cβ for any β ∈ Xb; (12.7)

pα|β1 = . . . pα|βn = . . . = cα for any α ∈ Xa, (12.8)

where cβ and cα are nonnegative constants.
On the other hand, either of conditions (12.7) and (12.8) implies (12.2)

and, hence, both (12.5) and (12.6). For example, let condition (12.7) hold. Thus
pab(α, β) = pa(α)pβ|α = pa(α)cβ. But we have pb(β) = ∑

α pab(α, β) =
cβ

∑
α pa(α) = cβ. So, in the Kolmogorovian model

cα = pa(α), cβ = pb(β). (12.9)

We remark that formally conditions (12.7) and (12.8) are weaker than conditions
(12.5) and (12.6). For example, “physically” (12.7) means that if first measurement
of a has been performed and then measurement of b is performed, then the result of
the b-measurement does not depend on the result of the preceding a-measurement.1

However, as we have seen, in the Kolmogorovian model all these conditions are
equivalent.

12.1.2 Quantum Model

This section is a complement to Section 2.4.

1 A priori cβ = pβ|α1 = . . . pβ|αn = . . . might be different from pb(β); this cβ might depend on a
(in general), but not on its concrete values.
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We would like to generalize the notion of independence to quantum observ-
ables with nondegenerate spectra.2 Two noncommuting quantum observables are
considered as complementary and they cannot be jointly measured – at least by
the conventional interpretation of QM. Therefore Kolmogorov’s original definition
(12.2) cannot be directly generalized to QM. However, its reformulation in terms of
transition probabilities, (12.7) and (12.8), can be easily transformed to QM.

We call two quantum observables independent if, e.g., (12.7) holds. It implies
that cβ = pβ|α1 = pβ|α2 = . . . . Since in QM the matrix Pb|a is doubly stochastic,
we have

∑
α pβ|α = 1. This implies, first of all, that in the infinite-dimensional

case there are no independent observables (with discrete spectrum!). In the finite-
dimensional case independence is equivalent to the condition

|〈eb
β, ea

α〉|2 = 1

n
, (12.10)

where n is the dimension of Hilbert space. Two orthonormal bases that satisfy
(12.10) are called mutually unbiased bases. To describe such bases is an extremely
complex geometric problem, see e.g., Bengtsson [33] for details and literature.

We remark that the relation of independence in QM is symmetric, in the same
way as in classical probability theory. Condition (12.7) is equivalent to condition of
(12.10) and the latter is also equivalent to condition (12.8). But, of course, condition
(12.9) is violated (for some state ψ).

We remark that one can properly define covariance of two (even noncommuting)
quantum observables (in spite of complementarity). However, we will not do this
specially for quantum probabilities. See Chapter 3 for a definition of covariance in
the general contextual probabilistic model and Section 12.4 of this Appendix for
embedding of the quantum model in it.

12.1.3 Växjö Model

This section is a complement to Section 3.1.4.
As in QM, to define independent observables, we use conditions (12.7) and (12.8)

However, the relation of independence is not symmetric (unlike the Kolmogorovian
and quantum models). In general, conditions (12.7) and (12.8) are not equivalent.
We say that b is independent of a if (12.7) holds; a is independent of b if (12.8)
holds.

We remark that, for coefficients cβ defined by(12.7),
∑

β cβ = ∑
β pβ|α1 = 1,

since the matrix Pb|a is always stochastic; in the same way, for coefficients cα

defined by (12.8), their sum is equal to 1.

2 An operator with nondegenerate spectrum is an analogue of a nondegenerate random variable,
see (2.14).



188 12 Appendix

Proposition 12.1 Let b not depend on a. Then covC (b|a) = 0.

Proof We have, see (3.9) in Section 3.1.4:

covC (b|a) =
∑

α,β

αβpa
C (α)pβ|α + āC b̄C − b̄C

∑

α,β

αpa
C (α)pβ|α − āC

∑

α,β

βpa
C (α)pβ|α

=
∑

α,β

αβpa
C (α)cβ + āC b̄C − b̄C

∑

α,β

αpa
C (α)cβ − āC

∑

α,β

βpa
C (α)cβ

= āC

∑

α

βcβ + āC b̄C − āC b̄C

∑

β

cβ − āC

∑

α

pa
C (α)

∑

β

βcβ = 0.

Consider two observables a and b taking n values. Let Pb|a be doubly stochastic
and let b be independent of a, i.e., (12.7) holds. Then, as in QM, we get that, for
each β, 1 = ∑

α pβ|α = ncβ. Thus, cβ = 1/n. In the same way if a is independent
of b and Pa|b is doubly stochastic, then all coefficients cα = 1/n.

Now let a and b be symmetrically conditioned, CS, see (2.18) in Chapter 2. Then
both matrices Pb|a and Pa|b are doubly stochastic. Let b be independent of a. Then
all coefficients cβ = 1/n. Hence, pα|β = pβ|α = 1/n. Thus a is independent of b.

We remark that under condition SC one can construct a representation of observ-
ables by self-adjoint operators in the complex Hilbert space. This representation has
all features of the conventional quantum representation; see the discussion in the
introduction to Chapter 4.

12.2 Proof of Wigner’s Inequality

This subsection is a complement to Section 2.2.2.
Let P = (Λ,F , P) be a probability space. We remark that in physics people

(following Bell) use typically the symbol Λ, instead of Ω. It is interpreted as a
set of hidden parameters: λ ∈ Λ determine the “prequantum state” of a quantum
system. Such a state is not described by quantum formalism. If one were able to
approach this state, it would be possible to determine the values of all quantum
observables.

Proof (Wigner’s inequality) We have:

P(a1(λ) = +1, a2(λ) = +1)

= P(a1(λ) = +1, a2(λ) = +1, a3(λ) = +1)

+ P(a1(λ) = +1, a2(λ) = +1, a3(λ) = −1),

(12.11)
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P(a2(λ) = −1, a3(λ) = +1)

= P(a1(λ) = +1, a2(λ) = −1, a3(λ) = +1)

+ P(λ ∈ Λ : a1(λ) = −1, a2(λ) = −1, a3(λ) = +1),

(12.12)

and

P(a1(λ) = +1, a3(λ) = +1)

= P(a1(λ) = +1, a2(λ) = +1, a3(λ) = +1)

+ P(a1(λ) = +1, a2(λ) = −1, a3(λ) = +1).

(12.13)

If we add together the equations (12.11) and (12.12) we obtain

P(a1(λ) = +1, a2(λ) = +1) + P(a2(λ) = −1, a3(λ) = +1)

= P(a1(λ) = +1, a2(λ) = +1, a3(λ) = +1)

+ P(a1(λ) = +1, a2(λ) = +1, a3(λ) = −1)

+ P(a1(λ) = +1, a2(λ) = −1, a3(λ) = +1)

+ P(a1(λ) = −1, a2(λ) = −1, a3(λ) = +1).

(12.14)

But the first and the third terms on the right hand side of this equation are just
those which when added together make up the term P(a1(λ) = +1, c(λ) = +1)
(Kolmogorov probability is additive). It therefore follows that

P(a1(λ) = +1, a2(λ) = +1) + P(a2(λ) = −1, c(λ) = +1)

= P(a1(λ) = +1, c(λ) = +1)

+ P(a1(λ) = +1, a2(λ) = +1, c(λ) = −1)

+ P(a1(λ) = −1, a2(λ) = −1, c(λ) = +1)

(12.15)

By using nonnegativity of probability we obtain the inequality

P(a1(λ) = +1, a2(λ) = +1) + P(a2(λ) = −1, c(λ) = +1)

≥ P(a1(λ) = +1, c(λ) = +1)
(12.16)
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12.3 Projection Postulate

This section is a complement to Sections 3.1.2 and 2.4.
We did not include the von Neumann’s projection postulate [301] in the main list

of postulates of quantum mechanics, because one can proceed quite far without this
postulate.

Projection Postulate. Let a be a physical observable represented by a self-
adjoint operator â having a purely discrete nondegenerate spectrum. Any measure-
ment of the observable a on the quantum state ψ induces transition from the state
ψ into one of eigenvectors ea

k of the operator â.

See von Neumann [301], p. 216: “Under the above assumption on â, a measure-
ment of a the has the consequence of changing each state ψ into one of the states
ea

1 , ea
2 , . . . which are connected with respective results of measurement α1, α2, . . .

The probabilities of these changes are therefore equal to the measurement probabil-
ities for α1, α2, . . .”

By the Copenhagen interpretation the ψ-function gives the state of an individual
quantum system. Therefore von Neumann’s postulate is about the result of trans-
formation of the state of, e.g., an electron in the process of measurement. By the
ensemble interpretation the ψ-function describes the state of an ensemble of parti-
cles. Here von Neumann’s postulate describes the state of the post-measurement
ensemble created by selection of particles with the fixed result of measurement
a = αk .

The original von Neumann’s postulate was formulated only for observables rep-
resented by operators with nondegenerate spectra. This fact is practically forgotten;
von Neumann pointed out that if the spectrum is degenerate, measurement induces
not a pure quantum state (fixed wave function ψpost−meas), but a mixture of pure
states. Later Lüders “generalized” von Neumann’s projection postulate to operators
with degenerate spectra. By Lüders the post-measurement state is always a pure
state again. It is the projection of the original state ψ to the subspace of eigenvectors
corresponding to the eigenvalue, say αk, obtained as the result of measurement, i.e.,
a = αk . In modern literature on QM Lüders’ postulate is considered as simply a
generalization of von Neumann’s postulate; people are not able to see the obvious
contradiction between them, cf. [210, 212].

12.4 Contextual View of Kolmogorov and Quantum Models

12.4.1 Contextual Models Induced by the Classical
(Kolmogorov) Model

This subsection is a complement to Sections 2.1 and 3.1.
We start with Kolmogorov’s model. Let P = (Ω,F , P) be a Kolmogorov prob-

ability space. It induces various Växjö models through various choices of collec-
tions of contexts C and observables O as well as systems of sets representing
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selection contexts for values of observables from O. The collection of contexts C
can be chosen as some sub-family of F consisting of sets of positive probability:
P(C) > 0, C ∈ C. The crucial point is that the collection of contexts need not form
a σ -algebra or algebra. The collection of observables O can be chosen as a set of
nondegenerate random variables.

For a discrete variable a, its essential range of values (“spectrum”) is given by
the set Xa = {α}, where P(ω ∈ Ω : a(ω) = α) > 0.

Contextual probabilities in Växjö models induced by the Kolmogorov model are
given by the Bayes’ formula (so, these are simply conditional probabilities). For an
observable (random variable) a and its value α ∈ Xa the [a = α]-selection context
Cα is given by the set Ca

α = {ω ∈ Ω : a(ω) = α}. The condition (3.5) evidently
holds.

12.4.2 Contextual Models Induced by the Quantum
(Dirac–von neumann) Model

This subsection is a complement to Sections 2.3 and 3.1.
We now consider Växjö models induced by the quantum model. The set of con-

texts C can be chosen as a subset of the unit sphere S of complex Hilbert space
H (a collection of normalized vectors3): each context C ∈ C is encoded by a vector
ψ ∈ S : C ≡ Cψ. Each Växjö model induced by QM is based on its own subset of
vectors ψ ∈ S. The maximal set of contexts is given by the whole S. It is used in
QM.

The set of observables O can be chosen as a subset of the space of self-adjoint
operators having purely discrete spectra.4 Contextual probabilities are defined by
Born’s rule. We consider the simplest case: all operators belonging to O have non-
degenerate spectra. In this case Born’s rule has the form (2.34). Let an operator
â ∈ O have the spectrum Xa = {α1, . . . , αN , . . .}, αi �= α j and let ea

α, α ∈ Xa, be
the corresponding eigenvectors. Then P(a = αi |Cψ ) = |〈ψ, ea

αi
〉|2. The [a = α]-

selection contexts Cα are represented by the eigenvectors Cα ≡ Cea
α
.

We have P(b = β|Cα) = P(a = α|Cβ) = |〈ea
α, eb

β〉|2.

12.5 Generalization of Quantum Formalism

Let us consider a finite-dimensional Hilbert space H. Let (for primary considera-
tion) E = {e j }n

j=1 be an orthonormal basis

3 Another way to describe quantum probabilities within the contextual probabilistic model is to
proceed (similarly to the Kolmogorov case) by representing contexts not by single vectors from
the unit sphere S, but by equivalence classes of these vectors: ψ1 is equivalent to ψ2 if ψ1 = cψ2,

where |c| = 1.

4 It is possible to generalize the contextual probabilistic model to cover observables with “contin-
uous spectra.” However, we do not need such a model for the coming applications.



192 12 Appendix

ψ =
∑

j

u j e j , u j = u j (ψ) ∈ C. (12.17)

Each E generates a class of (conventional) quantum observables, self-adjoint oper-
ators, see [301, 90]:

âψ =
∑

j

α j u j (ψ)e j , (12.18)

where Xa = {α1, . . . , αn}, α j ∈ R, α j �= αi is the range of values of a (so we start
with consideration of observables with nondegenerate spectra).

Let now E = {e j }n
j=1 be an arbitrary basis (thus in general 〈e j , ei 〉 �= 0, i �= j)

consisting of normalized vectors, i.e., 〈e j , e j 〉 = 1.5 Let us generalize the Dirac–von
Neumann formalism by considering observables (12.18) for an arbitrary (in general
nonorthogonal) basis E . We consider an arbitrary nonzero vector of H as a pure
quantum state. Thus the condition ψ ∈ S, where S is the unit sphere is eliminated
from the model. We postulate – generalizing Born’s postulate – that

Pψ (a = α j ) = |u j (ψ)|2∑
j |u j (ψ)|2 , (12.19)

where the coefficients u j (ψ) are given by the expansion (12.17).
If E is an orthonormal basis, then u j (ψ) = 〈ψ, e j 〉,

∑
j |u j (ψ)|2 = ‖ψ‖2 and

for a normalized vector ψ, we obtain the ordinary Born’s rule. Our generalization of
the Dirac–von Neumann formalism is very close to another well–known (and very
popular in quantum information) generalization of the class of quantum observables,
namely, to the formalism of a positive operator valued measure (POVM), [46, 148].

To proceed further in this way, we introduce (in general nonorthogonal) projec-
tors on the basis vectors: Π jψ = u j (ψ)e j . We remark that Π2

j = Π j , but in general
Π∗

j �= Π j . We have: |u j (ψ)|2 = 〈Π jψ,Π jψ〉 = 〈M jψ,ψ〉, where M j = Π∗
j Π j .

We remark that each M j is self-adjoint and, moreover, positively defined. We also
set M = ∑

j M j . Then our generalization of Born’s rule can be written as

Pψ (a = α j ) = 〈M jψ,ψ〉
〈Mψ,ψ〉 = Tr ρψ M j

Tr ρψ M
, (12.20)

where ρψ = ψ ⊗ ψ. We remark that, for an arbitrary nonzero ψ, the operator
ρψ ≥ 0.

Now we generalize the conventional notion of the density operator, by consid-
ering any nonzero ρ ≥ 0 as a generalized density operator (we recall that at the

5 We remark that QLRA, Section 4.2, produces the a-basis with normalized vectors, ‖ea
α‖2 = 1.

This is a consequence of stochasticity of an arbitrary matrix of “transition probabilities” (which
was used by QLRA to produce the a-basis). Thus we consider now a purely linear algebraic version
of this situation.
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moment we consider a finite-dimensional space). The corresponding generalization
of Born’s postulate has the following form:

Pψ (a = α j ) = Tr ρ M j

Tr ρ M
. (12.21)

The only difference from the POVM formalism is that the operator M �= I (the unit
operator).

We remark that 〈Mψ,ψ〉 = ∑
j |u j (ψ)|2 �= 0, ψ �= 0. Thus (we are in the

finite-dimensional case) the inverse operator M−1 is well defined.
We now proceed with our formalization and consider an arbitrary (separable)

Hilbert space H.

Definition 12.1 A generalized quantum state is represented by an arbitrary trace
class nonnegative (nonzero) operator ρ : ρ ≥ 0, 0 < Trρ < ∞.

Definition 12.2 A generalized quantum observable is represented by an arbitrary
(so in general nonnormalized) positive operator valued measure E on a measurable
space (X,F) such that E(X ) > 0.

Thus, for a generalized quantum observable E, we have

1) E(B) ≥ 0, for any set B ∈ F , and E(X ) > 0;
2) E(∪n

j=1 B j ) = ∑n
j=1 E(B j ) for all disjoint sequences {B j } in F .

Generalized Born’s rule: Let ρ and E be a generalized quantum state and
observable, respectively. Then the probability of finding the result x of the
E-measurement in a measurable set B (for an ensemble represented by ρ) is given
by

Pρ(x ∈ B) = Trρ E(B)

Trρ E(X )
. (12.22)

We remark that Trρ E(X ) > 0. To prove this, we consider the spectral expansion
of the trace class operator ρ = ∑

j q jψ j ⊗ ψ j . Here at least one q j > 0. Then
Trρ E(X ) = ∑

j q j 〈E(X )ψ j , ψ j 〉 > 0.

We now come back to the model considered at the beginning of this section:
a finite-dimensional space. We would like to model in the abstract linear algebra
framework the situation considered in Section 4.2, but in the case of the (in gen-
eral) non-doubly stochastic matrix of b|a-contextual probabilities Pb|a, i.e., for a
nonorthogonal basis {ea

α}. We consider two observables, one is a conventional self-
adjoint operator b̂ and the other is a generalized observable â. Thus the b-basis
Eb = {eb

j } is orthonormal, but the a-basis Ea = {ea
j } need not be (but we emphasize

that even the latter is normalized). Any vector ea
j is a conventional (pure) quan-

tum state. Thus by the rules of conventional QM we can find “transition proba-
bilities”: pb|a(βi |α j ) = Pea

j
(b = βi ) = |〈ea

j , eb
i 〉|2. Since Eb is orthonormal, we

have:
∑

i pb|a(βi |α j ) = ∑
i |〈ea

j , eb
i 〉|2 = ‖ea

j ‖2 = 1. The matrix of b|a-transition
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probabilities Pb|a is stochastic (as it should be). However, if Ea is not orthonormal,
then Pb|a is not doubly stochastic.

On the other hand, we can expand each eb
i with respect to Ea : eb

i = ∑
j u j (eb

i )ea
j .

By our generalized Born’s rule: pa|b(α j |βi ) = Peb
i
(a = α j )=|u j (eb

i )|2/∑ j |u j (eb
i )|2.

We have
∑

j pa|b(α j |βi ) = 1. Thus even the matrix of transition probabilities Pa|b

is stochastic.
Finally, we remark that all previous considerations are valid even in the case

when both observables are generalized.

12.6 Bohmian Mechanics

In Bohmian mechanics (which is a completion of quantum mechanics) a quantum
particle has well-defined position and momentum. Thus it has a trajectory (which is
totally impossible by the Copenhagen interpretation). The crucial point is that a par-
ticle is guided by a so-called pilot wave, which is given by the wave function. Since
the wave function of a family of N particles satisfies Schrödinger’s equation not on
“physical space” R3, but on the configuration space R3N , and since the equation of
motion of any particle in general depends nontrivially on the wave function of the
whole family, the Bohmian model is nonlocal.6 Precisely this problem was the main
reason for Schrödinger to reject his original interpretation of the wave function as a
physical wave and to switch to Born’s probabilistic interpretation.

We now present the detailed derivation of the equations of motion of a quantum
particle in the Bohmian model of quantum mechanics. The dynamics of the wave
function ψ(t, q) is described by Schrödinger’s equation (so this equation was simply
borrowed from the conventional quantum formalism):

i �
∂ψ

∂t
(t, q) = − �

2

2m

∂2ψ

∂q2
(t, q) + V (t, q)ψ(t, q). (12.23)

Here ψ(t, q) is a complex-valued function. At the moment we prefer not to discuss
the conventional probabilistic interpretation of ψ(t, q). We consider ψ(t, q) as just
a field.7 We consider the one-dimensional case, but the generalization to the multidi-
mensional case, q = (q1, . . . , qn), is straightforward. Let us write the wave function
ψ(t, q) in the following form:

ψ(t, q) = R(t, q)ei S(t,q)
� , (12.24)

6 It seems that the latter feature was unacceptable for Albert Einstein, who considered Bohmian
mechanics as a “cheap solution” of the problem of completion of quantum mechanics.
7 We recall that by the probability interpretation of ψ(t, q) (which was proposed by Max Born) the
quantity |ψ(t, q)|2 gives the probability of finding a quantum particle at the point q at the moment
t, see (2.38), Section 2.3.1.
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where R(t, q) = |ψ(t, q)| and θ (t, q) = S(t, q)/� is the argument of the complex
number ψ(t, q).

We put (12.24) into Schrödinger’s equation (12.23). We have

i�
∂ψ

∂t
= i�

(∂ R

∂t
ei S/� + i R

�

∂S

∂t
ei S/�

)
= i�

∂ R

∂t
ei S/� − R

∂S

∂t
ei S/�

and

∂ψ

∂q
= ∂ R

∂q
ei S/� + i R

�

∂S

∂q
ei S/�

and hence

∂2ψ

∂q2
= ∂2 R

∂q2
ei S/� + 2i

�

∂ R

∂q

∂S

∂q
ei S/� + i R

�

∂2S

∂q2
ei S/� − R

�2

(∂S

∂q

)2
ei S/�

We obtain the differential equations

∂ R

∂t
= −1

2m

(
2
∂ R

∂q

∂S

∂q
+ R

∂2S

∂q2

)
, (12.25)

−R
∂S

∂t
= − �

2

2m

(∂2 R

∂q2
− R

�2

(∂S

∂q

)2)
+ V R. (12.26)

By multiplying the right and left-hand sides of the equation (12.25) by 2R and
using the trivial equalities

∂ R2

∂t
= 2R

∂ R

∂t

and

∂

∂q
(R2 ∂S

∂q
) = 2R

∂ R

∂q

∂S

∂q
+ R2 ∂2S

∂q2
,

we derive the equation for R2:

∂ R2

∂t
+ 1

m

∂

∂q

(
R2 ∂S

∂q

)
= 0. (12.27)

We remark that if one uses Born’s probabilistic interpretation of the wave func-
tion, then

R2(t, x) = |ψ(t, x)|2
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gives the probability. Thus (12.27) is the equation describing the dynamics of the
probability distribution (in physics it is called the continuity equation).

The second equation can be written in the form

∂S

∂t
+ 1

2m

(∂S

∂q

)2
+

(
V − �

2

2m R

∂2 R

∂q2

)
= 0. (12.28)

Suppose that

�
2

2m
<< 1

and that the contribution of the term

�
2

2m R

∂2 R

∂q2

can be neglected. Then we obtain the equation

∂S

∂t
+ 1

2m

(∂S

∂q

)2
+ V = 0. (12.29)

From classical mechanics, we know that this is the classical Hamilton–Jacobi
equation, which corresponds to the dynamics of particles:

p = ∂S

∂q
or mq̇ = ∂S

∂q
, (12.30)

where particles move normal to the surface S = const.
David Bohm proposed that the equation (12.28) that should be interpreted in the

same way. But we see that in this equation the classical potential V is perturbed by
an additional “quantum potential”

U = �
2

2m R

∂2 R

∂q2
.

Thus in Bohmian mechanics the motion of a particle is described by the usual
Newton equation, but with the force corresponding to the combination of the classi-
cal potential V and the quantum one U :

m
dv

dt
= −

(∂V

∂q
− ∂U

∂q

)
. (12.31)

The crucial point is that the potential U is itself driven by a field equation –
Schrödinger’s equation (12.23). Thus the equation (12.31) cannot be considered as
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just the Newtonian classical dynamics (because the potential U depends on ψ as a
field parameter). We shall call (12.31) the Bohm–Newton equation.

We remark that typically in books on Bohmian mechanics [40, 149] it is empha-
sized that equation (12.31) is nothing other than the ordinary Newton equation. This
creates the impression that the Bohmian approach gives the possibility of reducing
quantum mechanics to ordinary classical mechanics. However, this is not the case.
Equation (12.31) does not provide the complete description of the dynamics of a
system. Since, as was pointed out, the quantum potential U is determined through
the wave function ψ and the latter evolves according to the Schrödinger equation,
the dynamics given by the Bohm–Newton equation cannot be considered indepen-
dently of Schrödinger’s dynamics.
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Model., Vol. 2 (Växjö University Press, Växjö 2002)

166. Khrennikov, A. Yu. and Volovich, I. V.: Quantum nonlocality, EPR model, and Bell‘s theo-
rem. In: Semikhatov, A., Vasiliv, M., Zaikin, V. (eds.) 3rd International Sakharov Conference
on Physics: Proceedings, Vol. 2 (Scientific World, Moscow 2003), pp. 269–276

167. Khrennikov, A. Yu. (ed.): Foundations of Probability and Physics - 2, Ser. Math. Model., Vol.
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178. Khrennikov, A. Yu.: Contextual approach to quantum mechanics and the theory of the fun-
damental prespace. J. Math. Phys. 45, 902–921 (2004)

179. Khrennikov, A. Yu.: EPR-Bohm experiment and interference of probabilities. Found. Phys.
Lett. 17, 691–700 (2004)

180. Khrennikov, A. Yu.:, On quantum-like probabilistic structure of mental information. Open
Syst. Information Dynam. 11 (3), 267–275 (2004)

181. Khrennikov, A. Yu.: Modeling of Processes of Thinking in p-Adic Coordinates (Nauka, Fiz-
matlit, Moscow 2004) (in Russian)

182. Khrennikov, A. Yu. (ed.): Quantum Theory: Reconsideration of Foundations - 2, Ser. Math.
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231. Löngren, L.: Comput. Inform. Sci. 2, 165–175 (1967)
232. Luczak, A., Bartho, P., Marguet, S. L., Buzsáki, G. and Harris, K. D: Sequential structure of
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